Structure and Motion Lab, Royal Veterinary College, AL9 7TA, Hatfield, UK.
Evolutionary Biomechanics Laboratory, Imperial College London, SW7 2AZ, London, UK.
Integr Comp Biol. 2024 Sep 27;64(3):987-1006. doi: 10.1093/icb/icae072.
Movement is integral to animal life, and most animal movement is actuated by the same engine: striated muscle. Muscle input is typically mediated by skeletal elements, resulting in musculoskeletal systems that are geared: at any instant, the muscle force and velocity are related to the output force and velocity only via a proportionality constant G, the "mechanical advantage". The functional analysis of such "simple machines" has traditionally centered around this instantaneous interpretation, such that a small vs large G is thought to reflect a fast vs forceful system, respectively. But evidence is mounting that a comprehensive analysis ought to also consider the mechanical energy output of a complete contraction. Here, we approach this task systematically, and deploy the theory of physiological similarity to study how gearing affects the flow of mechanical energy in a minimalist model of a musculoskeletal system. Gearing influences the flow of mechanical energy in two key ways: it can curtail muscle work output, because it determines the ratio between the characteristic muscle kinetic energy and work capacity; and it defines how each unit of muscle work is partitioned into different system energies, that is, into kinetic vs "parasitic" energy such as heat. As a consequence of both effects, delivering maximum work in minimum time and with maximum output speed generally requires a mechanical advantage of intermediate magnitude. This optimality condition can be expressed in terms of two dimensionless numbers that reflect the key geometric, physiological, and physical properties of the interrogated musculoskeletal system, and the environment in which the contraction takes place. Illustrative application to exemplar musculoskeletal systems predicts plausible mechanical advantages in disparate biomechanical scenarios, yields a speculative explanation for why gearing is typically used to attenuate the instantaneous force output ($G_{\text{opt}} \lt 1)$, and predicts how G needs to vary systematically with animal size to optimize the delivery of mechanical energy, in superficial agreement with empirical observations. A many-to-one mapping from musculoskeletal geometry to mechanical performance is identified, such that differences in G alone do not provide a reliable indicator for specialization for force vs speed-neither instantaneously, nor in terms of mechanical energy output. The energy framework presented here can be used to estimate an optimal mechanical advantage across variable muscle physiology, anatomy, mechanical environment, and animal size, and so facilitates investigation of the extent to which selection has made efficient use of gearing as a degree of freedom in musculoskeletal "design."
运动是动物生命的组成部分,大多数动物运动都是由同一引擎驱动的:横纹肌。肌肉的输入通常由骨骼元素介导,从而产生肌肉骨骼系统,该系统是齿轮化的:在任何时刻,肌肉力和速度仅通过比例常数 G(“机械优势”)与输出力和速度相关。这种“简单机器”的功能分析传统上集中在这种即时解释上,因此,小 G 与大 G 分别被认为反映了快速系统和有力系统。但是,越来越多的证据表明,全面的分析还应该考虑完整收缩的机械能输出。在这里,我们系统地进行了这项任务,并利用生理相似性理论来研究齿轮如何影响肌肉骨骼系统的最小模型中的机械能流动。齿轮以两种关键方式影响机械能的流动:它可以限制肌肉做功的输出,因为它决定了特征肌肉动能和做功能力之间的比例;它定义了肌肉做功的每个单位如何分配到不同的系统能量中,即动能与“寄生”能量(如热能)。由于这两个效应的共同作用,以最小的时间和最大的输出速度提供最大的功通常需要中等大小的机械优势。这种最佳条件可以用两个无维数的数来表示,这两个数反映了被研究的肌肉骨骼系统的关键几何、生理和物理特性,以及收缩发生的环境。对示例肌肉骨骼系统的说明性应用预测了不同生物力学情况下的合理机械优势,为为什么齿轮通常用于减弱瞬时力输出($G_{\text{opt}} \lt 1$)提供了推测性解释,并预测了 G 如何需要系统地随动物大小变化以优化机械能的传递,与经验观察有一定程度的一致。从肌肉骨骼几何形状到机械性能的多对一映射被识别出来,因此,仅 G 的差异本身并不能提供用于力与速度专业化的可靠指标 - 无论是即时的,还是机械能量输出的。这里提出的能量框架可用于估计跨可变肌肉生理学、解剖学、机械环境和动物大小的最佳机械优势,从而促进对选择如何有效地将齿轮作为肌肉骨骼“设计”的自由度加以利用的程度的研究。