Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
Plant Signal Behav. 2010 Apr;5(4):464-6. doi: 10.4161/psb.5.4.10911. Epub 2010 Apr 9.
A basic systems model for vesicle trafficking in Arabidopsis pollen tubes was constructed. The model was composed of transcriptome data and differential equations. The transcriptome data revealed some genes controlling vesicle trafficking in the pollen tubes, and the differential equations connected the molecular functions of the gene products. The computed pollen tube growth reasonably agreed with biological samples. Here, I expand the computational prediction into exocytic vesicles during pollen germination, which can be used to examine the accuracy of the systems model with biological samples. The computational analysis of the model predicts that the number of exocytic vesicles changes in an over 10-fold range before the vesicle trafficking system reaches the equilibrium that makes the pollen tube grow logarithmically. SYP125 (syntaxin of plants 125) is highly localized in the pollen tube tip in both the biological sample and systems model. The computational analysis predicts that SYP125 would highly localize in exocytic vesicles temporally before the pollen tube grows logarithmically. These kinetic predictions guide future research directions.
构建了一个拟南芥花粉管小泡运输的基本系统模型。该模型由转录组数据和微分方程组成。转录组数据揭示了一些控制花粉管小泡运输的基因,微分方程将基因产物的分子功能联系起来。计算得到的花粉管生长与生物样本相当吻合。在这里,我将计算预测扩展到花粉萌发过程中的胞吐小泡,这可以用来用生物样本检查系统模型的准确性。模型的计算分析预测,在小泡运输系统达到使花粉管对数生长的平衡之前,胞吐小泡的数量会发生 10 倍以上的变化。SYP125(植物 SNARE 蛋白 125)在生物样本和系统模型中都高度定位于花粉管顶端。计算分析预测,在花粉管对数生长之前,SYP125 会在时间上高度定位于胞吐小泡中。这些动力学预测为未来的研究方向提供了指导。