Departamento de Química Aplicada, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain.
J Org Chem. 2010 Mar 5;75(5):1458-73. doi: 10.1021/jo9023039.
The Diels-Alder reaction constitutes one of the most powerful and convergent C-C bond-forming transformations and continues to be the privileged route to access cyclohexene substructures, which are widespread within natural products and bioactive constituents. Over the recent years, asymmetric catalytic Diels-Alder methodologies have experienced a tremendous advance, but still inherently difficult diene-dienophile combinations prevail, such as those involving dienes less reactive than cyclopentadiene or dienophiles like beta-substituted acrylates and equivalents. Here the main features of alpha'-hydroxy enones as reaction partners of the Diels-Alder reaction are shown, with especial focus on their potentials and limitations in solving the above difficult cases. Alpha'-hydroxy enones are able to bind reversibly to both Lewis acids and Brønsted acids, forming 1,4-coordinated species that are shown to efficiently engage in these inherently difficult Diels-Alder reactions. On these bases, a convenient control of the reaction stereocontrol can be achieved using a camphor-derived chiral alpha'-hydroxy enone model (substrate-controlled asymmetric induction) and either Lewis acid or Brønsted acid catalysis. Complementing this approach, highly enantio- and diastereoselective Diels-Alder reactions can also be carried out by using simple achiral alpha'-hydroxy enones in combination with Evans' chiral Cu(II)-BOX complexes (catalyst-controlled asymmetric induction). Of importance, alpha'-hydroxy enones showed improved reactivity profiles and levels of stereoselectivity (endo/exo and facial selectivity) as compared with other prototypical dienophiles in the reactions involving dienes less reactive than cyclopentadiene. A rationale of some of these results is provided based on both kinetic experiments and quantum calculations. Thus, kinetic measurements of Brønsted acid promoted Diels-Alder reactions of alpha'-hydroxy enones show a first-order rate with respect to both enone and Brønsted acid promoter. Quantum calculations also support this trend and provide a rational explanation of the observed stereochemical outcome of the reactions. Finally, these fundamental studies are complemented with applications in natural products synthesis. More specifically, a nonracemic synthesis of (-)-nicolaioidesin C is described wherein a Brønsted acid catalyzed Diels-Alder reaction involving a alpha'-hydroxy enone substrate is the key step toward the hitherto challenging trisubstituted cyclohexene subunit.
Diels-Alder 反应是最强和最具会聚性的 C-C 键形成转化之一,仍然是访问广泛存在于天然产物和生物活性成分中的环己烯亚结构的首选途径。近年来,不对称催化 Diels-Alder 方法学取得了巨大进展,但仍然存在固有的困难二烯-二烯加成物组合,例如涉及比环戊二烯反应性更低的二烯或类似β-取代丙烯酸盐和等效物的二烯加成物。本文展示了α'-羟基烯酮作为 Diels-Alder 反应的反应伙伴的主要特点,特别关注它们在解决上述困难情况下的潜力和局限性。α'-羟基烯酮能够可逆地与路易斯酸和布朗斯台德酸结合,形成 1,4-配位的物种,这些物种被证明能够有效地参与这些固有的困难 Diels-Alder 反应。在此基础上,使用莰烯衍生的手性α'-羟基烯酮模型(底物控制的不对称诱导)和路易斯酸或布朗斯台德酸催化,可以方便地控制反应的立体控制。补充这种方法,使用简单的非手性α'-羟基烯酮与 Evans 的手性 Cu(II)-BOX 配合物(催化剂控制的不对称诱导)也可以进行高度对映选择性和非对映选择性的 Diels-Alder 反应。重要的是,与涉及比环戊二烯反应性更低的二烯的反应中的其他典型二烯加成物相比,α'-羟基烯酮表现出改善的反应性谱和立体选择性(endo/exo 和面选择性)水平。基于动力学实验和量子计算,提供了对其中一些结果的基本原理。因此,对 Brønsted 酸促进的α'-羟基烯酮 Diels-Alder 反应的动力学测量显示出与烯酮和 Brønsted 酸促进剂都呈一级速率。量子计算也支持这一趋势,并为观察到的反应立体化学结果提供了合理的解释。最后,这些基础研究与天然产物合成的应用相补充。具体而言,描述了(-)-nicolaioidesin C 的非对映选择性合成,其中涉及α'-羟基烯酮底物的 Brønsted 酸催化 Diels-Alder 反应是通向迄今为止具有挑战性的三取代环己烯亚基的关键步骤。