Suppr超能文献

用于植入式生物传感器的自清洁温敏纳米复合水凝胶膜的设计。

Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors.

机构信息

Department of Biomedical Engineering, Mail Stop 3120, Texas A&M University, College Station, TX 77843, USA.

出版信息

Acta Biomater. 2010 Aug;6(8):2903-10. doi: 10.1016/j.actbio.2010.01.039. Epub 2010 Feb 1.

Abstract

Following implantation of a biosensor, adhesion of proteins and cells and eventual fibrous encapsulation will limit analyte diffusion and impair sensor performance. A thermoresponsive nanocomposite hydrogel was developed as a self-cleaning biosensor membrane to minimize the effect of the host response and its utility for an optical glucose sensor, demonstrated here. It was previously reported that thermoresponsive nanocomposite hydrogels prepared from photopolymerization of an aqueous solution of N-isopropylacrylamide (NIPAAm) and polysiloxane colloidal nanoparticles released adhered cells with thermal cycling. However, poly(N-isopropylacrylamide) hydrogels exhibit a volume phase transition temperature (VPTT) of approximately 33-34 degrees C, which is below body temperature. Thus, the hydrogel would be in a collapsed state in vivo, which would ultimately limit diffusion of the target analyte (e.g., glucose) to the encapsulated sensor. In this study, the VPTT of the nanocomposite hydrogel was increased by introducing N-vinylpyrrolidone (NVP) as a comonomer, so that the hydrogel was in the swollen state in vivo. This thermoresponsive nanocomposite hydrogel was prepared by the photopolymerization of an aqueous solution of NIPAAm, NVP, and polysiloxane colloidal nanoparticles. In addition to a VPTT a few degrees above body temperature, the hydrogel also exhibited good mechanical strength, glucose diffusion, and in vitro cell release upon thermal cycling. Thus, this nanocomposite hydrogel may be useful as a biosensor membrane to minimize biofouling and extend the lifetime and efficiency of implantable glucose sensors and other biosensors.

摘要

在生物传感器植入后,蛋白质和细胞的黏附和最终的纤维包裹将限制分析物的扩散并影响传感器的性能。为了最大限度地减少宿主反应的影响,开发了一种热响应性纳米复合水凝胶作为自清洁生物传感器膜,并在此展示了其在光学葡萄糖传感器中的应用。先前有报道称,通过 N-异丙基丙烯酰胺 (NIPAAm) 和聚硅氧烷胶体纳米粒子的水溶液光聚合制备的热响应性纳米复合水凝胶在热循环时释放黏附的细胞。然而,聚 (N-异丙基丙烯酰胺) 水凝胶的体积相转变温度 (VPTT) 约为 33-34 摄氏度,低于体温。因此,水凝胶在体内会处于塌陷状态,这最终会限制目标分析物(例如葡萄糖)向封装传感器的扩散。在这项研究中,通过引入 N-乙烯基吡咯烷酮 (NVP) 作为共聚单体来增加纳米复合水凝胶的 VPTT,从而使水凝胶在体内处于溶胀状态。这种热响应性纳米复合水凝胶是通过 NIPAAm、NVP 和聚硅氧烷胶体纳米粒子的水溶液光聚合制备的。除了 VPTT 比体温高几度外,该水凝胶还表现出良好的机械强度、葡萄糖扩散性以及热循环时体外细胞释放。因此,这种纳米复合水凝胶可用作生物传感器膜,以最大限度地减少生物污垢,并延长可植入葡萄糖传感器和其他生物传感器的使用寿命和效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验