Suppr超能文献

单分子分辨率的微阵列分析。

Microarray analysis at single-molecule resolution.

机构信息

Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Linz 4040, Austria.

出版信息

IEEE Trans Nanobioscience. 2010 Mar;9(1):51-8. doi: 10.1109/TNB.2010.2040627. Epub 2010 Jan 29.

Abstract

Bioanalytical chip-based assays have been enormously improved in sensitivity in the recent years; detection of trace amounts of substances down to the level of individual fluorescent molecules has become state-of-the-art technology. The impact of such detection methods, however, has yet not fully been exploited, mainly due to a lack of appropriate mathematical tools for robust data analysis. One particular example relates to the analysis of microarray data. While classical microarray analysis works at resolutions of 2-20 microm and quantifies the abundance of target molecules by determining average pixel intensities, a novel high-resolution approach directly visualizes individual bound molecules as diffraction-limited peaks. The now possible quantification via counting is less susceptible to labeling artifacts and background noise. We have developed an approach for the analysis of high-resolution microarray images. First, it consists of a single-molecule detection step, based on undecimated wavelet transforms, and second, a spot identification step via spatial statistics approach (corresponding to the segmentation step in the classical microarray analysis). The detection method was tested on simulated images with a concentration range of 0.001 to 0.5 molecules per square micrometer and signal-to-noise ratio (SNR) between 0.9 and 31.6. For SNR above 15, the false negatives relative error was below 15%. Separation of foreground/background is proved reliable, in case foreground density exceeds background by a factor of 2. The method has also been applied to real data from high-resolution microarray measurements.

摘要

近年来,基于生物分析芯片的分析方法在灵敏度方面有了极大的提高;检测痕量物质,甚至单个荧光分子的水平,已成为最先进的技术。然而,这种检测方法的影响尚未得到充分利用,主要是因为缺乏用于稳健数据分析的适当数学工具。一个特别的例子涉及到微阵列数据的分析。虽然经典的微阵列分析在 2-20 微米的分辨率下工作,并通过确定平均像素强度来定量目标分子的丰度,但一种新的高分辨率方法可以直接将结合的单个分子可视化,作为衍射限制的峰。现在通过计数进行的定量分析较少受到标记伪影和背景噪声的影响。我们已经开发了一种用于分析高分辨率微阵列图像的方法。首先,它包括基于非下采样小波变换的单分子检测步骤,其次是通过空间统计学方法进行斑点识别步骤(对应于经典微阵列分析中的分割步骤)。该检测方法在浓度范围为 0.001 至 0.5 个分子/平方微米且信噪比(SNR)在 0.9 至 31.6 之间的模拟图像上进行了测试。对于 SNR 高于 15 的情况,假阴性的相对误差低于 15%。已经证明,在前景密度超过背景密度两倍的情况下,前景/背景的分离是可靠的。该方法还应用于高分辨率微阵列测量的实际数据。

相似文献

1
Microarray analysis at single-molecule resolution.单分子分辨率的微阵列分析。
IEEE Trans Nanobioscience. 2010 Mar;9(1):51-8. doi: 10.1109/TNB.2010.2040627. Epub 2010 Jan 29.
3
Improving gene quantification by adjustable spot-image restoration.通过可调斑点图像恢复提高基因定量分析
Bioinformatics. 2007 Sep 1;23(17):2265-72. doi: 10.1093/bioinformatics/btm337. Epub 2007 Jun 28.
4
Estimating gene signals from noisy microarray images.从有噪声的微阵列图像中估计基因信号。
IEEE Trans Nanobioscience. 2008 Jun;7(2):142-53. doi: 10.1109/TNB.2008.2000745.
9
[Progress in filters for denoising cryo-electron microscopy images].[用于冷冻电子显微镜图像去噪的滤波器研究进展]
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Mar 3;53(2):425-433. doi: 10.19723/j.issn.1671-167X.2021.02.033.

引用本文的文献

本文引用的文献

2
Estimating gene signals from noisy microarray images.从有噪声的微阵列图像中估计基因信号。
IEEE Trans Nanobioscience. 2008 Jun;7(2):142-53. doi: 10.1109/TNB.2008.2000745.
3
The undecimated wavelet decomposition and its reconstruction.非下采样小波分解及其重构。
IEEE Trans Image Process. 2007 Feb;16(2):297-309. doi: 10.1109/tip.2006.887733.
4
RNA expression profiling at the single molecule level.单分子水平的RNA表达谱分析。
Genome Res. 2006 Aug;16(8):1041-5. doi: 10.1101/gr.4999906. Epub 2006 Jun 29.
5
A model of technical variation of microarray signals.微阵列信号技术变异模型。
J Comput Biol. 2006 May;13(4):996-1003. doi: 10.1089/cmb.2006.13.996.
7
Mixture model analysis of DNA microarray images.DNA微阵列图像的混合模型分析
IEEE Trans Med Imaging. 2005 Jul;24(7):901-9. doi: 10.1109/tmi.2005.848358.
10
Noise factor analysis for cDNA microarrays.cDNA微阵列的噪声因子分析
J Biomed Opt. 2004 Jul-Aug;9(4):663-78. doi: 10.1117/1.1755232.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验