Suppr超能文献

通过同源的 Cullin-RING E3 连接酶特异性受体调节果蝇 vasa 的体内活性。

Regulation of Drosophila vasa in vivo through paralogous cullin-RING E3 ligase specificity receptors.

机构信息

Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada.

出版信息

Mol Cell Biol. 2010 Apr;30(7):1769-82. doi: 10.1128/MCB.01100-09. Epub 2010 Feb 1.

Abstract

In Drosophila species, molecular asymmetries guiding embryonic development are established maternally. Vasa, a DEAD-box RNA helicase, accumulates in the posterior pole plasm, where it is required for embryonic germ cell specification. Maintenance of Vasa at the posterior pole requires the deubiquitinating enzyme Fat facets, which protects Vasa from degradation. Here, we found that Gustavus (Gus) and Fsn, two ubiquitin Cullin-RING E3 ligase specificity receptors, bind to the same motif on Vasa through their paralogous B30.2/SPRY domains. Both Gus and Fsn accumulate in the pole plasm in a Vasa-dependent manner. Posterior Vasa accumulation is precocious in Fsn mutant oocytes; Fsn overexpression reduces ovarian Vasa levels, and embryos from Fsn-overexpressing females form fewer primordial germ cells (PGCs); thus, Fsn destabilizes Vasa. In contrast, endogenous Gus may promote Vasa activity in the pole plasm, as gus females produce embryos with fewer PGCs, and posterior accumulation of Vas is delayed in gus mutant oocytes that also lack one copy of cullin-5. We propose that Fsn- and Gus-containing E3 ligase complexes contribute to establishing a fine-tuned steady state of Vasa ubiquitination that influences the kinetics of posterior Vasa deployment.

摘要

在果蝇物种中,指导胚胎发育的分子不对称性是由母体建立的。Vasa 是一种 DEAD-box RNA 解旋酶,在后极质中积累,在那里它是胚胎生殖细胞特化所必需的。Vasa 在后端的维持需要去泛素化酶 Fat facets,它可以保护 Vasa 免受降解。在这里,我们发现 Gustavus (Gus) 和 Fsn,两种泛素 Cullin-RING E3 连接酶特异性受体,通过它们的同源 B30.2/SPRY 结构域结合到 Vasa 上的相同模体上。Gus 和 Fsn 都以 Vasa 依赖的方式在后极质中积累。Fsn 突变体卵母细胞中 Vasa 的后极积累过早;Fsn 过表达降低卵巢 Vasa 水平,来自 Fsn 过表达雌性的胚胎形成较少的原始生殖细胞 (PGC);因此,Fsn 使 Vasa 不稳定。相比之下,内源性 Gus 可能会促进极质中 Vasa 的活性,因为 Gus 雌性产生的胚胎 PGC 较少,并且 Gus 突变体卵母细胞中 Vas 的后极积累也延迟,而 Gus 突变体卵母细胞中也缺失了一个 cullin-5 拷贝。我们提出,Fsn 和 Gus 包含的 E3 连接酶复合物有助于建立 Vasa 泛素化的精细稳态,从而影响 Vasa 后极部署的动力学。

相似文献

1
Regulation of Drosophila vasa in vivo through paralogous cullin-RING E3 ligase specificity receptors.
Mol Cell Biol. 2010 Apr;30(7):1769-82. doi: 10.1128/MCB.01100-09. Epub 2010 Feb 1.
2
VASA localization requires the SPRY-domain and SOCS-box containing protein, GUSTAVUS.
Dev Cell. 2002 Dec;3(6):865-76. doi: 10.1016/s1534-5807(02)00361-1.
4
Fat facets interacts with vasa in the Drosophila pole plasm and protects it from degradation.
Curr Biol. 2003 Oct 28;13(21):1905-9. doi: 10.1016/j.cub.2003.10.026.
9
Targeting and anchoring Tudor in the pole plasm of the Drosophila oocyte.
PLoS One. 2010 Dec 15;5(12):e14362. doi: 10.1371/journal.pone.0014362.

引用本文的文献

1
Essential functions of RNA helicase Vasa in maintaining germline stem cells and piRNA-guided silencing in spermatogenesis.
Front Cell Dev Biol. 2024 Aug 9;12:1450227. doi: 10.3389/fcell.2024.1450227. eCollection 2024.
3
The Gene Can Regulate the Fecundity of the Green Peach Aphid, (Sulzer).
Front Physiol. 2021 Jan 12;11:596392. doi: 10.3389/fphys.2020.596392. eCollection 2020.
4
An Interaction Network of RNA-Binding Proteins Involved in Oogenesis.
Mol Cell Proteomics. 2020 Sep;19(9):1485-1502. doi: 10.1074/mcp.RA119.001912. Epub 2020 Jun 17.
5
Germline Maintenance Through the Multifaceted Activities of GLH/Vasa in P Granules.
Genetics. 2019 Nov;213(3):923-939. doi: 10.1534/genetics.119.302670. Epub 2019 Sep 10.
6
FBXO45-MYCBP2 regulates mitotic cell fate by targeting FBXW7 for degradation.
Cell Death Differ. 2020 Feb;27(2):758-772. doi: 10.1038/s41418-019-0385-7. Epub 2019 Jul 8.
8
An unregulated regulator: Vasa expression in the development of somatic cells and in tumorigenesis.
Dev Biol. 2016 Jul 1;415(1):24-32. doi: 10.1016/j.ydbio.2016.05.012. Epub 2016 May 11.
10
SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-β Signaling Pathway Targeting the Type II Receptor.
J Biol Chem. 2015 Jul 17;290(29):17894-17908. doi: 10.1074/jbc.M114.607184. Epub 2015 Jun 1.

本文引用的文献

2
Bicaudal-C associates with a Trailer Hitch/Me31B complex and is required for efficient Gurken secretion.
Dev Biol. 2009 Apr 1;328(1):160-72. doi: 10.1016/j.ydbio.2009.01.024. Epub 2009 Feb 10.
3
Cloning and characterization of the SSB-1 and SSB-4 genes expressed in zebrafish gonads.
Biochem Genet. 2009 Apr;47(3-4):179-90. doi: 10.1007/s10528-008-9215-1. Epub 2009 Jan 30.
4
Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis.
Fly (Austin). 2009 Jan-Mar;3(1):15-28. doi: 10.4161/fly.3.1.7751. Epub 2009 Jan 2.
5
SPRY domain-containing SOCS box protein 2: crystal structure and residues critical for protein binding.
J Mol Biol. 2009 Feb 27;386(3):662-74. doi: 10.1016/j.jmb.2008.12.078. Epub 2009 Jan 6.
6
Translational control of localized mRNAs: restricting protein synthesis in space and time.
Nat Rev Mol Cell Biol. 2008 Dec;9(12):971-80. doi: 10.1038/nrm2548.
8
Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins.
Mech Dev. 2008 Sep-Oct;125(9-10):865-73. doi: 10.1016/j.mod.2008.06.005. Epub 2008 Jun 12.
9
The SCF FSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in C. elegans.
Cell Death Differ. 2008 Jun;15(6):1054-62. doi: 10.1038/cdd.2008.30. Epub 2008 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验