Suppr超能文献

从 23 种癌细胞系和人类蛋白质图谱的分泌组中鉴定出候选的癌症血清生物标志物。

Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas.

机构信息

Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan.

出版信息

Mol Cell Proteomics. 2010 Jun;9(6):1100-17. doi: 10.1074/mcp.M900398-MCP200. Epub 2010 Feb 1.

Abstract

Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6-137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers.

摘要

尽管癌细胞分泌组谱分析是一种很有前途的策略,可用于鉴定潜在的体液可及性癌症生物标志物,但仍存在一些问题,例如癌细胞分泌组可以挖掘的深度以及研究人员从不断增加的已鉴定蛋白质中选择有用候选物的效率。因此,我们使用一维 SDS-PAGE 和纳升 LC-MS/MS 在 LTQ-Orbitrap 质谱仪上对来自 11 种癌症类型的 23 个人类癌细胞系的分泌组进行了分析,以生成更全面的癌细胞分泌组。共检测到 31,180 种蛋白质,占 4,584 种非冗余蛋白质,平均每种细胞系可鉴定出 1,300 种蛋白质。使用蛋白质分泌预测算法,55.8%的蛋白质似乎是从细胞中释放或脱落的。根据三种策略选择鉴定出的蛋白质作为潜在的标记候选物:(i)一种癌症类型特有的但其他类型没有的蛋白质(癌症类型特异性标记候选物),(ii)大多数癌细胞系释放的蛋白质(泛癌症标记候选物),以及(iii)推测与癌症相关途径有关的蛋白质。然后,我们在人类蛋白质图谱中检查蛋白质表达谱,以鉴定同时在分泌组中检测到并在癌症组织中高度表达的生物标志物候选物。这种分析为每种肿瘤类型产生了 6-137 个标记候选物和 94 个潜在的泛癌症标记物。其中,我们选择性地验证了单核细胞分化抗原 CD14(用于肝癌)、基质细胞衍生因子 1(用于肺癌)以及组织蛋白酶 L1 和干扰素诱导的 17-kDa 蛋白(用于鼻咽癌)作为潜在的血清学癌症标志物。总之,从 23 种癌细胞系的分泌组和人类蛋白质图谱中鉴定出的蛋白质代表了一个潜在癌症生物标志物的集中资源库。

相似文献

1
Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas.
Mol Cell Proteomics. 2010 Jun;9(6):1100-17. doi: 10.1074/mcp.M900398-MCP200. Epub 2010 Feb 1.
4
Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling.
J Proteomics. 2014 Mar 17;99:26-39. doi: 10.1016/j.jprot.2014.01.001. Epub 2014 Jan 10.
5
Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes.
J Biomed Biotechnol. 2010;2010:437143. doi: 10.1155/2010/437143. Epub 2009 Dec 27.
8
Pathway-based biomarker search by high-throughput proteomics profiling of secretomes.
J Proteome Res. 2009 Mar;8(3):1489-503. doi: 10.1021/pr8008572.
9
Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines.
Mol Cell Proteomics. 2009 Dec;8(12):2746-58. doi: 10.1074/mcp.M900134-MCP200. Epub 2009 Sep 23.

引用本文的文献

1
The relationship between cathepsins and nasopharyngeal carcinoma: a Mendelian randomization analysis.
Discov Oncol. 2025 May 8;16(1):699. doi: 10.1007/s12672-025-02378-6.
2
The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives.
Wound Repair Regen. 2025 Jan-Feb;33(1):e13251. doi: 10.1111/wrr.13251.
4
Secretome of Cancer-Associated Fibroblasts (CAFs) Influences Drug Sensitivity in Cancer Cells.
J Proteome Res. 2024 Jun 7;23(6):2160-2168. doi: 10.1021/acs.jproteome.4c00112. Epub 2024 May 20.
5
Biomarkers for Early Cancer Detection: A Landscape View of Recent Advancements, Spotlighting Pancreatic and Liver Cancers.
ACS Pharmacol Transl Sci. 2024 Feb 14;7(3):586-613. doi: 10.1021/acsptsci.3c00346. eCollection 2024 Mar 8.
6
New Cardiovascular Biomarkers in Breast Cancer Patients Undergoing Doxorubicin-Based Chemotherapy.
Arq Bras Cardiol. 2023 Dec;120(12):e20230167. doi: 10.36660/abc.20230167.
7
A tumor cell specific Zona Pellucida glycoprotein 3 RNA transcript encodes an intracellular cancer antigen.
Front Oncol. 2023 Dec 6;13:1233039. doi: 10.3389/fonc.2023.1233039. eCollection 2023.
8
A role for mutations in and other genes affecting ependymal cells in idiopathic normal pressure hydrocephalus.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2300681120. doi: 10.1073/pnas.2300681120. Epub 2023 Dec 15.
9
Modulation of cellular transcriptome and proteome composition by azidohomoalanine-implications on click chemistry-based secretome analysis.
J Mol Med (Berl). 2023 Jul;101(7):855-867. doi: 10.1007/s00109-023-02333-4. Epub 2023 May 26.

本文引用的文献

1
Overexpression and elevated plasma level of tumor-associated antigen 90K/Mac-2 binding protein in colorectal carcinoma.
Proteomics Clin Appl. 2008 Dec;2(12):1586-95. doi: 10.1002/prca.200800080. Epub 2008 Oct 7.
3
Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines.
Mol Cell Proteomics. 2009 Dec;8(12):2746-58. doi: 10.1074/mcp.M900134-MCP200. Epub 2009 Sep 23.
8
A compendium of potential biomarkers of pancreatic cancer.
PLoS Med. 2009 Apr 7;6(4):e1000046. doi: 10.1371/journal.pmed.1000046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验