Suppr超能文献

通过对 4 种肺癌细胞系条件培养基的蛋白质组学分析鉴定 5 个候选肺癌生物标志物。

Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines.

机构信息

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G1X5, Canada.

出版信息

Mol Cell Proteomics. 2009 Dec;8(12):2746-58. doi: 10.1074/mcp.M900134-MCP200. Epub 2009 Sep 23.

Abstract

Detection of lung cancer at an early stage is necessary for successful therapy and improved survival rates. We performed a bottom-up proteomics analysis using a two-dimensional LC-MS/MS strategy on the conditioned media of four lung cancer cell lines of different histological backgrounds (non-small cell lung cancer: H23 (adenocarcinoma), H520 (squamous cell carcinoma), and H460 (large cell carcinoma); small cell lung cancer: H1688) to identify secreted or membrane-bound proteins that could be useful as novel lung cancer biomarkers. Proteomics analysis of the four conditioned media allowed identification of 1,830 different proteins (965, 871, 726, and 847 from H1688, H23, H460, and H520, respectively). All proteins were assigned a subcellular localization, and 38% were classified as extracellular or membrane-bound. We successfully identified the internal control proteins (also detected by ELISA), kallikrein-related peptidases 14 and 11, and IGFBP2. We also identified known or putative lung cancer tumor markers such as squamous cell carcinoma antigen, carcinoembryonic antigen, chromogranin A, creatine kinase BB, progastrin-releasing peptide, neural cell adhesion molecule, and tumor M2-PK. To select the most promising candidates for validation, we performed tissue specificity assays, functional classifications, literature searches for association to cancer, and a comparison of our proteome with the proteome of lung-related diseases and serum. Five novel lung cancer candidates, ADAM-17, osteoprotegerin, pentraxin 3, follistatin, and tumor necrosis factor receptor superfamily member 1A were preliminarily validated in the serum of patients with lung cancer and healthy controls. Our results demonstrate the utility of this cell culture proteomics approach to identify secreted and shed proteins that are potentially useful as serological markers for lung cancer.

摘要

早期发现肺癌对于成功治疗和提高生存率至关重要。我们使用二维 LC-MS/MS 策略对来自不同组织学背景的四种肺癌细胞系(非小细胞肺癌:H23(腺癌)、H520(鳞状细胞癌)和 H460(大细胞癌);小细胞肺癌:H1688)的条件培养基进行了自下而上的蛋白质组学分析,以鉴定可能作为新型肺癌生物标志物的分泌或膜结合蛋白。对四种条件培养基的蛋白质组学分析鉴定了 1830 种不同的蛋白质(分别来自 H1688、H23、H460 和 H520 的 965、871、726 和 847 种)。所有蛋白质均被分配了亚细胞定位,其中 38%被归类为细胞外或膜结合蛋白。我们成功鉴定了内部对照蛋白(也通过 ELISA 检测到)、激肽释放酶相关肽酶 14 和 11 以及 IGFBP2。我们还鉴定了已知或潜在的肺癌肿瘤标志物,如鳞状细胞癌抗原、癌胚抗原、嗜铬粒蛋白 A、肌酸激酶 BB、胃泌素释放肽、神经细胞黏附分子和肿瘤 M2-PK。为了选择最有前途的候选物进行验证,我们进行了组织特异性测定、功能分类、与癌症相关的文献搜索以及将我们的蛋白质组与与肺部疾病和血清相关的蛋白质组进行比较。五种新型肺癌候选物,ADAM-17、骨保护素、五聚素 3、卵泡抑素和肿瘤坏死因子受体超家族成员 1A,在肺癌患者和健康对照者的血清中进行了初步验证。我们的结果证明了这种细胞培养蛋白质组学方法用于鉴定潜在有用的分泌和脱落蛋白作为肺癌血清标志物的实用性。

相似文献

1
Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines.
Mol Cell Proteomics. 2009 Dec;8(12):2746-58. doi: 10.1074/mcp.M900134-MCP200. Epub 2009 Sep 23.
3
Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets.
Mol Cell Proteomics. 2007 Nov;6(11):1997-2011. doi: 10.1074/mcp.M600465-MCP200. Epub 2007 Jul 25.
7
Integrated proteomic profiling of cell line conditioned media and pancreatic juice for the identification of pancreatic cancer biomarkers.
Mol Cell Proteomics. 2011 Oct;10(10):M111.008599. doi: 10.1074/mcp.M111.008599. Epub 2011 Jun 7.
8
The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context.
Biochim Biophys Acta. 2013 Nov;1834(11):2242-58. doi: 10.1016/j.bbapap.2013.01.029. Epub 2013 Jan 31.
9
Proteomics-based identification of tumor relevant proteins in lung adenocarcinoma.
Biomed Pharmacother. 2013 Sep;67(7):621-7. doi: 10.1016/j.biopha.2013.06.005. Epub 2013 Jul 4.
10
Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid.
J Proteome Res. 2012 Oct 5;11(10):5034-45. doi: 10.1021/pr300606e. Epub 2012 Sep 20.

引用本文的文献

1
Method standardization of secretome production, collection, and characterization: New insights and challenges.
Regen Ther. 2025 Apr 24;29:466-473. doi: 10.1016/j.reth.2025.04.005. eCollection 2025 Jun.
2
An Introduction to Analytical Challenges, Approaches, and Applications in Mass Spectrometry-Based Secretomics.
Mol Cell Proteomics. 2023 Sep;22(9):100636. doi: 10.1016/j.mcpro.2023.100636. Epub 2023 Aug 18.
4
The crossroad between autoimmune disorder, tissue remodeling and cancer of the thyroid: The long pentraxin 3 (PTX3).
Front Endocrinol (Lausanne). 2023 Mar 21;14:1146017. doi: 10.3389/fendo.2023.1146017. eCollection 2023.
5
Proteomic Analysis Reveals Molecular Differences in the Development of Gastric Cancer.
Evid Based Complement Alternat Med. 2022 Jul 31;2022:8266544. doi: 10.1155/2022/8266544. eCollection 2022.
6
Systematic molecular analysis of the human secretome and membrane proteome in gastrointestinal adenocarcinomas.
J Cell Mol Med. 2022 Jun;26(12):3329-3342. doi: 10.1111/jcmm.17338. Epub 2022 Apr 29.
7
IGFBP-4: A promising biomarker for lung cancer.
J Med Biochem. 2021 Jun 5;40(3):237-244. doi: 10.5937/jomb0-25629.
8
Effective Analysis of Inpatient Satisfaction: The Random Forest Algorithm.
Patient Prefer Adherence. 2021 Apr 7;15:691-703. doi: 10.2147/PPA.S294402. eCollection 2021.
9
Establishment of Immune-related Gene Pair Signature to Predict Lung Adenocarcinoma Prognosis.
Cell Transplant. 2020 Jan-Dec;29:963689720977131. doi: 10.1177/0963689720977131.
10
Soluble sPD-L1 and Serum Amyloid A1 as Potential Biomarkers for Lung Cancer.
J Med Biochem. 2019 May 11;38(3):332-341. doi: 10.2478/jomb-2018-0036. eCollection 2019 Jul.

本文引用的文献

1
Squamous cell carcinoma antigen in lung cancer and nonmalignant respiratory diseases.
Lung. 2008 Sep-Oct;186(5):323-6. doi: 10.1007/s00408-008-9108-4. Epub 2008 Jul 29.
4
Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target.
Clin Cancer Res. 2008 Apr 15;14(8):2326-33. doi: 10.1158/1078-0432.CCR-07-4457.
5
A multiparametric serum kallikrein panel for diagnosis of non-small cell lung carcinoma.
Clin Cancer Res. 2008 Mar 1;14(5):1355-62. doi: 10.1158/1078-0432.CCR-07-4117.
7
ADAM-17 predicts adverse outcome in patients with breast cancer.
Ann Oncol. 2008 Jun;19(6):1075-81. doi: 10.1093/annonc/mdm609. Epub 2008 Jan 30.
10
Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets.
Mol Cell Proteomics. 2007 Nov;6(11):1997-2011. doi: 10.1074/mcp.M600465-MCP200. Epub 2007 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验