Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G1X5, Canada.
Mol Cell Proteomics. 2009 Dec;8(12):2746-58. doi: 10.1074/mcp.M900134-MCP200. Epub 2009 Sep 23.
Detection of lung cancer at an early stage is necessary for successful therapy and improved survival rates. We performed a bottom-up proteomics analysis using a two-dimensional LC-MS/MS strategy on the conditioned media of four lung cancer cell lines of different histological backgrounds (non-small cell lung cancer: H23 (adenocarcinoma), H520 (squamous cell carcinoma), and H460 (large cell carcinoma); small cell lung cancer: H1688) to identify secreted or membrane-bound proteins that could be useful as novel lung cancer biomarkers. Proteomics analysis of the four conditioned media allowed identification of 1,830 different proteins (965, 871, 726, and 847 from H1688, H23, H460, and H520, respectively). All proteins were assigned a subcellular localization, and 38% were classified as extracellular or membrane-bound. We successfully identified the internal control proteins (also detected by ELISA), kallikrein-related peptidases 14 and 11, and IGFBP2. We also identified known or putative lung cancer tumor markers such as squamous cell carcinoma antigen, carcinoembryonic antigen, chromogranin A, creatine kinase BB, progastrin-releasing peptide, neural cell adhesion molecule, and tumor M2-PK. To select the most promising candidates for validation, we performed tissue specificity assays, functional classifications, literature searches for association to cancer, and a comparison of our proteome with the proteome of lung-related diseases and serum. Five novel lung cancer candidates, ADAM-17, osteoprotegerin, pentraxin 3, follistatin, and tumor necrosis factor receptor superfamily member 1A were preliminarily validated in the serum of patients with lung cancer and healthy controls. Our results demonstrate the utility of this cell culture proteomics approach to identify secreted and shed proteins that are potentially useful as serological markers for lung cancer.
早期发现肺癌对于成功治疗和提高生存率至关重要。我们使用二维 LC-MS/MS 策略对来自不同组织学背景的四种肺癌细胞系(非小细胞肺癌:H23(腺癌)、H520(鳞状细胞癌)和 H460(大细胞癌);小细胞肺癌:H1688)的条件培养基进行了自下而上的蛋白质组学分析,以鉴定可能作为新型肺癌生物标志物的分泌或膜结合蛋白。对四种条件培养基的蛋白质组学分析鉴定了 1830 种不同的蛋白质(分别来自 H1688、H23、H460 和 H520 的 965、871、726 和 847 种)。所有蛋白质均被分配了亚细胞定位,其中 38%被归类为细胞外或膜结合蛋白。我们成功鉴定了内部对照蛋白(也通过 ELISA 检测到)、激肽释放酶相关肽酶 14 和 11 以及 IGFBP2。我们还鉴定了已知或潜在的肺癌肿瘤标志物,如鳞状细胞癌抗原、癌胚抗原、嗜铬粒蛋白 A、肌酸激酶 BB、胃泌素释放肽、神经细胞黏附分子和肿瘤 M2-PK。为了选择最有前途的候选物进行验证,我们进行了组织特异性测定、功能分类、与癌症相关的文献搜索以及将我们的蛋白质组与与肺部疾病和血清相关的蛋白质组进行比较。五种新型肺癌候选物,ADAM-17、骨保护素、五聚素 3、卵泡抑素和肿瘤坏死因子受体超家族成员 1A,在肺癌患者和健康对照者的血清中进行了初步验证。我们的结果证明了这种细胞培养蛋白质组学方法用于鉴定潜在有用的分泌和脱落蛋白作为肺癌血清标志物的实用性。