Department of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
Mol Cell Proteomics. 2010 Jun;9(6):1281-95. doi: 10.1074/mcp.M000020-MCP201. Epub 2010 Feb 1.
Photosynthetic organisms are able to adapt to changes in light conditions by balancing the light excitation energy between the light-harvesting systems of photosystem (PS) II and photosystem I to optimize the photosynthetic yield. A key component in this process, called state transitions, is the chloroplast protein kinase Stt7/STN7, which senses the redox state of the plastoquinone pool. Upon preferential excitation of photosystem II, this kinase is activated through the cytochrome b(6)f complex and required for the phosphorylation of the light-harvesting system of photosystem II, a portion of which migrates to photosystem I (state 2). Preferential excitation of photosystem I leads to the inactivation of the kinase and to dephosphorylation of light-harvesting complex (LHC) II and its return to photosystem II (state 1). Here we compared the thylakoid phosphoproteome of the wild-type strain and the stt7 mutant of Chlamydomonas under state 1 and state 2 conditions. This analysis revealed that under state 2 conditions several Stt7-dependent phosphorylations of specific Thr residues occur in Lhcbm1/Lhcbm10, Lhcbm4/Lhcbm6/Lhcbm8/Lhcbm9, Lhcbm3, Lhcbm5, and CP29 located at the interface between PSII and its light-harvesting system. Among the two phosphorylation sites detected specifically in CP29 under state 2, one is Stt7-dependent. This phosphorylation may play a crucial role in the dissociation of CP29 from PSII and/or in its association to PSI where it serves as a docking site for LHCII in state 2. Moreover, Stt7 was required for the phosphorylation of the thylakoid protein kinase Stl1 under state 2 conditions, suggesting the existence of a thylakoid protein kinase cascade. Stt7 itself is phosphorylated at Ser(533) in state 2, but analysis of mutants with a S533A/D change indicated that this phosphorylation is not required for state transitions. Moreover, we also identified phosphorylation sites that are redox (state 2)-dependent but independent of Stt7 and additional phosphorylation sites that are redox-independent.
光合作用生物能够通过平衡光系统 (PS) II 和光系统 I 的光捕获系统之间的光激发能量来适应光条件的变化,从而优化光合作用产量。在这个过程中,一种关键的成分是叫做状态转变的叶绿体蛋白激酶 Stt7/STN7,它可以感知质体醌库的氧化还原状态。当光系统 II 受到优先激发时,这种激酶通过细胞色素 b(6)f 复合物被激活,并需要对光系统 II 的光捕获系统进行磷酸化,其中一部分迁移到光系统 I(状态 2)。光系统 I 的优先激发导致激酶失活,并使光捕获复合物 (LHC) II 去磷酸化并返回光系统 II(状态 1)。在这里,我们比较了野生型菌株和 Chlamydomonas 的 stt7 突变体在状态 1 和状态 2 条件下的类囊体磷蛋白组。这项分析表明,在状态 2 条件下,Lhcbm1/Lhcbm10、Lhcbm4/Lhcbm6/Lhcbm8/Lhcbm9、Lhcbm3、Lhcbm5 和 CP29 等几个特定 Thr 残基的磷酸化是由 Stt7 依赖性的,这些蛋白位于 PSII 与其光捕获系统之间的界面处。在状态 2 下特异性检测到的 CP29 的两个磷酸化位点中,有一个是由 Stt7 依赖性的。这种磷酸化可能在 CP29 从 PSII 解离和/或在 PSI 中结合中发挥关键作用,在状态 2 下它是 LHCII 的停靠点。此外,在状态 2 条件下,Stt7 还需要对类囊体蛋白激酶 Stl1 进行磷酸化,这表明存在类囊体蛋白激酶级联反应。在状态 2 下,Stt7 自身在 Ser(533)处被磷酸化,但对 S533A/D 突变体的分析表明,这种磷酸化不是状态转变所必需的。此外,我们还鉴定了一些依赖于氧化还原(状态 2)但不依赖于 Stt7 的磷酸化位点,以及一些不依赖于氧化还原的其它磷酸化位点。