Suppr超能文献

一种新的包含叶片序列约束的通量图优化模型。

A novel fluence map optimization model incorporating leaf sequencing constraints.

机构信息

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.

出版信息

Phys Med Biol. 2010 Feb 21;55(4):1243-64. doi: 10.1088/0031-9155/55/4/023. Epub 2010 Feb 2.

Abstract

A novel fluence map optimization model incorporating leaf sequencing constraints is proposed to overcome the drawbacks of the current objective inside smoothing models. Instead of adding a smoothing item to the objective function, we add the total number of monitor unit (TNMU) requirement directly to the constraints which serves as an important factor to balance the fluence map optimization and leaf sequencing optimization process at the same time. Consequently, we formulate the fluence map optimization models for the trailing (left) leaf synchronized, leading (right) leaf synchronized and the interleaf motion constrained non-synchronized leaf sweeping schemes, respectively. In those schemes, the leaves are all swept unidirectionally from left to right. Each of those models is turned into a linear constrained quadratic programming model which can be solved effectively by the interior point method. Those new models are evaluated with two publicly available clinical treatment datasets including a head-neck case and a prostate case. As shown by the empirical results, our models perform much better in comparison with two recently emerged smoothing models (the total variance smoothing model and the quadratic smoothing model). For all three leaf sweeping schemes, our objective dose deviation functions increase much slower than those in the above two smoothing models with respect to the decreasing of the TNMU. While keeping plans in the similar conformity level, our new models gain much better performance on reducing TNMU.

摘要

提出了一种新的包含叶片序列约束的通量图优化模型,以克服当前目标内部平滑模型的缺陷。我们不是在目标函数中添加平滑项,而是直接将总监测器单位(TNMU)要求添加到约束中,这是平衡通量图优化和叶片序列优化过程的重要因素。因此,我们分别为尾随(左)叶片同步、领先(右)叶片同步和叶片间运动约束非同步叶片扫描方案制定了通量图优化模型。在这些方案中,叶片都是从左到右单向扫描的。每个模型都被转化为一个线性约束二次规划模型,可以通过内点法有效地求解。使用两个公开的临床治疗数据集(一个头颈部病例和一个前列腺病例)对这些新模型进行了评估。实验结果表明,与最近出现的两种平滑模型(总方差平滑模型和二次平滑模型)相比,我们的模型性能要好得多。对于所有三种叶片扫描方案,我们的目标剂量偏差函数在 TNMU 减少的情况下比上述两种平滑模型的变化要慢得多。在保持计划相似一致性水平的同时,我们的新模型在减少 TNMU 方面表现更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验