Suppr超能文献

On the optimal reconstruction and control of adaptive optical systems with mirror dynamics.

作者信息

Correia Carlos, Raynaud Henri-François, Kulcsár Caroline, Conan Jean-Marc

机构信息

Office National d'Etudes et de Recherches Aérospatiales, 29 Av. de la Division Leclerc, 92322 Châtillon, France.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2010 Feb 1;27(2):333-49. doi: 10.1364/JOSAA.27.000333.

Abstract

In adaptive optics (AO) the deformable mirror (DM) dynamics are usually neglected because, in general, the DM can be considered infinitely fast. Such assumption may no longer apply for the upcoming Extremely Large Telescopes (ELTs) with DM that are several meters in diameter with slow and/or resonant responses. For such systems an important challenge is to design an optimal regulator minimizing the variance of the residual phase. In this contribution, the general optimal minimum-variance (MV) solution to the full dynamical reconstruction and control problem of AO systems (AOSs) is established. It can be looked upon as the parent solution from which simpler (used hitherto) suboptimal solutions can be derived as special cases. These include either partial DM-dynamics-free solutions or solutions derived from the static minimum-variance reconstruction (where both atmospheric disturbance and DM dynamics are neglected altogether). Based on a continuous stochastic model of the disturbance, a state-space approach is developed that yields a fully optimal MV solution in the form of a discrete-time linear-quadratic-Gaussian (LQG) regulator design. From this LQG standpoint, the control-oriented state-space model allows one to (1) derive the optimal state-feedback linear regulator and (2) evaluate the performance of both the optimal and the sub-optimal solutions. Performance results are given for weakly damped second-order oscillatory DMs with large-amplitude resonant responses, in conditions representative of an ELT AO system. The highly energetic optical disturbance caused on the tip/tilt (TT) modes by the wind buffeting is considered. Results show that resonant responses are correctly handled with the MV regulator developed here. The use of sub-optimal regulators results in prohibitive performance losses in terms of residual variance; in addition, the closed-loop system may become unstable for resonant frequencies in the range of interest.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验