Suppr超能文献

酵母溴结构域家族组蛋白结合选择性的生化特征分析。

Biochemical profiling of histone binding selectivity of the yeast bromodomain family.

机构信息

Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America.

出版信息

PLoS One. 2010 Jan 26;5(1):e8903. doi: 10.1371/journal.pone.0008903.

Abstract

BACKGROUND

It has been shown that molecular interactions between site-specific chemical modifications such as acetylation and methylation on DNA-packing histones and conserved structural modules present in transcriptional proteins are closely associated with chromatin structural changes and gene activation. Unlike methyl-lysine that can interact with different protein modules including chromodomains, Tudor and MBT domains, as well as PHD fingers, acetyl-lysine (Kac) is known thus far to be recognized only by bromodomains. While histone lysine acetylation plays a crucial role in regulation of chromatin-mediated gene transcription, a high degree of sequence variation of the acetyl-lysine binding site in the bromodomains has limited our understanding of histone binding selectivity of the bromodomain family. Here, we report a systematic family-wide analysis of 14 yeast bromodomains binding to 32 lysine-acetylated peptides derived from known major acetylation sites in four core histones that are conserved in eukaryotes.

METHODOLOGY

The histone binding selectivity of purified recombinant yeast bromodomains was assessed by using the native core histones in an overlay assay, as well as N-terminally biotinylated lysine-acetylated histone peptides spotted on streptavidin-coated nitrocellulose membrane in a dot blot assay. NMR binding analysis further validated the interactions between histones and selected bromodomain. Structural models of all yeast bromodomains were built using comparative modeling to provide insights into the molecular basis of their histone binding selectivity.

CONCLUSIONS

Our study reveals that while not all members of the bromodomain family are privileged to interact with acetylated-lysine, identifiable sequence features from those that bind histone emerge. These include an asparagine residue at the C-terminus of the third helix in the 4-helix bundle, negatively charged residues around the ZA loop, and preponderance of aromatic amino acid residues in the binding pocket. Further, while bromodomains exhibit selectivity for different sites in histones, individual interactions are of modest affinity. Finally, electrostatic interactions appear to be a primary determining factor that guides productive association between a bromodomain and a lysine-acetylated histone.

摘要

背景

已证实,DNA 包装组蛋白上的特定化学修饰(如乙酰化和甲基化)与转录蛋白中保守的结构模块之间的分子相互作用与染色质结构变化和基因激活密切相关。与可以与包括色氨酸结构域、Tudor 和 MBT 结构域以及 PHD 指结构域在内的不同蛋白模块相互作用的甲基化赖氨酸不同,乙酰化赖氨酸(Kac)迄今为止仅被溴结构域识别。虽然组蛋白赖氨酸乙酰化在调节染色质介导的基因转录中起着至关重要的作用,但溴结构域中乙酰化赖氨酸结合位点的高度序列变异限制了我们对溴结构域家族与组蛋白结合选择性的理解。在这里,我们报告了对来自真核生物中四个核心组蛋白中已知主要乙酰化位点的 32 个赖氨酸乙酰化肽的 14 个酵母溴结构域进行的系统家族-wide 分析。

方法

使用天然核心组蛋白在覆盖测定中以及在印迹测定中用 N 端生物素化赖氨酸乙酰化组蛋白肽斑点在链霉亲和素包被的硝酸纤维素膜上来评估纯化的重组酵母溴结构域的组蛋白结合选择性。NMR 结合分析进一步验证了组蛋白与选定溴结构域之间的相互作用。使用比较建模构建了所有酵母溴结构域的结构模型,以提供对其组蛋白结合选择性的分子基础的深入了解。

结论

我们的研究表明,虽然并非所有溴结构域家族成员都与乙酰化赖氨酸优先相互作用,但从与组蛋白结合的那些成员中出现了可识别的序列特征。这些特征包括 4 螺旋束中第三螺旋的 C 末端的天冬酰胺残基、ZA 环周围的带负电荷的残基以及结合口袋中芳香族氨基酸残基的优势。此外,虽然溴结构域对组蛋白中的不同位点表现出选择性,但单个相互作用的亲和力适中。最后,静电相互作用似乎是指导溴结构域与赖氨酸乙酰化组蛋白之间产生关联的主要决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3cd/2811197/39dd927b653e/pone.0008903.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验