Suppr超能文献

胆酸胶束 - 通过聚乙二醇化控制水腔的大小。

Cholic acid micelles--controlling the size of the aqueous cavity by PEGylation.

机构信息

Department of Pharmacology, University of California Davis, Davis, CA 95616, USA.

出版信息

Phys Chem Chem Phys. 2010 Feb 21;12(7):1589-94. doi: 10.1039/b914440d. Epub 2010 Jan 11.

Abstract

Data show that cholic acid (CA) micelles are less densely packed and much smaller than micelles formed by typical surfactants, suggesting that CA derivatives can be used to synthesize drug nanocarriers. Presumably, the formation of internal cavities is favored by the facial characteristics of the CA molecule, i.e. the convex molecular structure that is hydrophobic on one side and hydrophilic on the other. Here, we present a thermodynamical approach to quantify the effect of facial characteristics on forces governing the self-assembling process of CA molecules. We show that facial characteristics favor the entrapment of water molecules at interfaces upon CA aggregation, which weakens the attraction between CA hydrophobic moieties. Our computer simulations suggest that these effects contribute significantly to the tendency of CA molecules to form small "hollow-core" micelles. The attachment of polyethylene glycol (PEG) molecular chains to CA increases the repulsive forces in the system, reducing even further the micelle size. We use the present molecular model and experimental critical micelle concentration (cmc) data for CA-PEG systems to predict the change of the micelle size and cavity volume with the increase of the PEG chain length (x). Our computations indicate that the CA-PEG micelles are good candidates for drug delivery. The structural stability of CA-PEG micelles was further assessed by molecular dynamics simulations. We also tested the drug loading efficiency of this system and found an average of 0.5 mg paclitaxel load per 20 mg of CA-PEG polymer. The present study helps to identify critical parameters that control structural properties of the CA based nanocarriers and suggests practical means to optimize the ratio between micelle size and volume of the internal cavity.

摘要

数据表明,胆酸(CA)胶束的堆积密度比典型表面活性剂形成的胶束小得多,这表明 CA 衍生物可用于合成药物纳米载体。推测,内部空腔的形成得益于 CA 分子的面特征,即一侧疏水另一侧亲水的凸分子结构。在这里,我们提出了一种热力学方法来量化面特征对 CA 分子自组装过程中作用力的影响。我们表明,面特征有利于 CA 聚集时水分子在界面处的捕获,从而削弱 CA 疏水部分之间的吸引力。我们的计算机模拟表明,这些效应有助于 CA 分子形成小的“空心核”胶束的趋势。聚乙二醇(PEG)分子链与 CA 的附着增加了体系中的排斥力,进一步减小了胶束的尺寸。我们使用目前的分子模型和 CA-PEG 体系的实验临界胶束浓度(cmc)数据来预测随着 PEG 链长(x)的增加,胶束尺寸和腔体积的变化。我们的计算表明,CA-PEG 胶束是药物输送的良好候选物。通过分子动力学模拟进一步评估了 CA-PEG 胶束的结构稳定性。我们还测试了该系统的药物负载效率,发现每 20 毫克 CA-PEG 聚合物平均负载 0.5 毫克紫杉醇。本研究有助于确定控制 CA 基纳米载体结构特性的关键参数,并提出了优化胶束尺寸与内部空腔体积之比的实用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验