Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
J Mass Spectrom. 2010 Mar;45(3):297-305. doi: 10.1002/jms.1715.
The effects of the identity and position of basic residues on peptide dissociation were explored in the positive and negative modes. Low-energy collision-induced dissociation (CID) was performed on singly protonated and deprotonated heptapeptides of the type: XAAAAAA, AAAXAAA, AAAAAXA and AAAAAAX, where X is arginine (R), lysine (K) or histidine (H) residues and A is alanine. For M + H, the CID spectra are dominated by cleavages adjacent to the basic residues and the majority of the product ions contain the basic residues. The order of a basic residue's influence on fragmentation of M + H is arginine > histidine approximately lysine, which is also the order of decreasing gas-phase basicity for these amino acids. These results are consistent with the side chains of basic residues being positive ion charge sites and with the more basic arginine residues having a higher retention (i.e. sequestering) of the positive charge. In contrast, for M-H the identity and position of basic residues has almost no effect on backbone fragmentation. This is consistent with basic residues not being negative mode charge sites. For these peptides, more complete series of backbone fragments, which are important in the sequencing of unknowns, can be found in the negative mode. Spectra at both polarities contain C-terminal y-ions, but y(n)''(+) has two more hydrogens than the corresponding y(n)(-). Another major difference is the production of the N-terminal backbone series b(n)(+) in the positive mode and c(n)(-) in the negative mode. Thus, comparison of positive and negative ion spectra with an emphasis on searching for pairs of ions that differ by 2 Da (y(n)''(+) vs y(n)(-)) and by 15 Da (b(n)(+) vs c(n)(-)) may be a useful method for determining whether a product ion is generated from the C-terminal or the N-terminal end of a peptide. In addition, a characteristic elimination of NH=C=NH from arginine residues is observed for deprotonated peptides.
研究了正、负离子模式下碱性残基的位置和种类对肽段解吸的影响。对质子化和去质子化的七肽(XAAAAAA、AAAXAAA、AAAAXA 和 AAAAAX)进行了低能碰撞诱导解离(CID),其中 X 是精氨酸(R)、赖氨酸(K)或组氨酸(H)残基,A 是丙氨酸。对于 M + H,CID 谱主要由靠近碱性残基的裂解产生,大多数产物离子都含有碱性残基。碱性残基对 M + H 片段化影响的顺序是精氨酸 > 组氨酸 ≈ 赖氨酸,这也是这些氨基酸在气相中碱性降低的顺序。这些结果与碱性侧链是正离子电荷中心的观点一致,也与更碱性的精氨酸残基保留(即隔离)正电荷的能力更高的观点一致。相比之下,对于 M-H,碱性残基的种类和位置对骨架断裂几乎没有影响。这与碱性残基不是负离子模式的电荷中心一致。对于这些肽,在负离子模式下可以找到更完整的骨架碎片系列,这对于未知物的测序非常重要。在两种极性下的谱图都含有 C 末端 y-离子,但 y(n)''(+) 比相应的 y(n)(-) 多两个氢。另一个主要区别是在正模式下产生 N 末端骨架系列 b(n)(+),而在负模式下产生 c(n)(-)。因此,通过比较正、负离子谱图,特别是寻找相差 2 Da(y(n)''(+) vs y(n)(-))和 15 Da(b(n)(+) vs c(n)(-))的离子对,可能是一种确定产物离子是来自肽的 C 末端还是 N 末端的有用方法。此外,还观察到去质子化肽中从精氨酸残基中消除 NH=C=NH 的特征。