Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA.
Inorg Chem. 2010 Mar 1;49(5):2557-67. doi: 10.1021/ic902531p.
Reactions of the "naked" and MgO(100) supported Zr(2)Pd(2) cluster with nitrogen and four hydrogen molecules were studied at the density functional level using the periodic slab approach (VASP). It was shown that adsorption of the Zr(2)Pd(2) cluster on the MgO(100) surface does not change its gas-phase geometry and electronic structure significantly. In spite of this the N(2) coordination to the MgO(100)-supported Zr(2)Pd(2) cluster, I/MgO, is found to be almost 30 kcal/mol less favorable than for the "naked" one. The addition of the first H(2) molecule to the resulting II/MgO, that is, II/MgO + H(2) --> IV/MgO reaction, proceeds with a relatively small, 9.0 kcal/mol, barrier and is exothermic by 8.3 kcal/mol. The same reaction for the "naked" Zr(2)Pd(2) cluster requires a slightly larger barrier (10.1 kcal/mol) and is highly exothermic (by 23.3 kcal/mol). The interaction of the H(2) molecule with the intermediate IV/MgO (i.e., the second H(2) molecule addition to II/MgO) requires larger energy barrier, 23.3 kcal/mol vs 8.8 kcal/mol for the "naked" cluster, and is exothermic by 20.5 kcal/mol (vs 18.2 kcal/mol reported for the "naked" Zr(2)Pd(2) cluster). The addition of the H(2) molecule to VI/MgO and VI (i.e., the third H(2) molecule addition to II/MgO and II, respectively) requires similar barriers, 12.0 versus 16.8 kcal/mol, respectively, but is highly exothermic for the supported cluster compared to the "naked" one, 13.6 versus 0.1 kcal/mol. The addition of the fourth H(2) molecule occurs with almost twice larger barrier for the "naked" cluster compared to the adsorbed species, 30.7 versus 15.9 kcal/mol. Furthermore, this reaction step is endothermic (by 11.4 kcal/mol) for the gas-phase cluster but exothermic by 7.8 kcal/mol for the adsorbed cluster. Dissociation of the formed hydrazine molecule from the on-surface complex X/MgO and the "naked" complex X requires 19.1 and 26.3 kcal/mol, respectively. Thus, the Zr(2)Pd(2) adsorption on the MgO(100) surface facilitates its reaction with N(2) and four H(2) molecules, as well as formation of hydrazine from the hydrogen and nitrogen molecules. The reported differences in the reactivity of the "naked" and MgO adsorbed Zr(2)Pd(2) clusters were explained by analyzing the nature of the H(2) addition steps in these systems.
使用基于周期性平面近似(VASP)的密度泛函理论,研究了“裸露”和 MgO(100)负载 Zr(2)Pd(2)团簇与氮气和四个氢分子的反应。结果表明,Zr(2)Pd(2)团簇在 MgO(100)表面的吸附不会显著改变其气相几何形状和电子结构。尽管如此,与“裸露”的相比,N(2)与 MgO(100)负载的 Zr(2)Pd(2)团簇,I/MgO,的配位亲和力要低约 30 千卡/摩尔。第一个 H(2)分子添加到生成的 II/MgO,即 II/MgO + H(2) --> IV/MgO 反应,需要相对较小的 9.0 千卡/摩尔的能垒,并且是放热的 8.3 千卡/摩尔。对于“裸露”的 Zr(2)Pd(2)团簇,相同的反应需要稍微更大的能垒(10.1 千卡/摩尔),并且是高度放热的(23.3 千卡/摩尔)。H(2)分子与中间态 IV/MgO(即,第二个 H(2)分子添加到 II/MgO)的相互作用需要更大的能量垒,23.3 千卡/摩尔比“裸露”团簇的 8.8 千卡/摩尔,并且是放热的 20.5 千卡/摩尔(对于“裸露”的 Zr(2)Pd(2)团簇报告的 18.2 千卡/摩尔)。H(2)分子添加到 VI/MgO 和 VI(即,分别向 II/MgO 和 II 添加第三个 H(2)分子)需要相似的能垒,分别为 12.0 和 16.8 千卡/摩尔,但对于负载的团簇,与“裸露”的相比,高度放热,分别为 13.6 和 0.1 千卡/摩尔。与吸附物种相比,“裸露”的簇中第四个 H(2)分子的添加需要近两倍大的能垒,分别为 30.7 和 15.9 千卡/摩尔。此外,对于气相团簇,这个反应步骤是吸热的(11.4 千卡/摩尔),但对于吸附团簇是放热的 7.8 千卡/摩尔。从表面复合物 X/MgO 和“裸露”复合物 X 中形成的肼分子的解离需要 19.1 和 26.3 千卡/摩尔,分别。因此,Zr(2)Pd(2)在 MgO(100)表面的吸附促进了其与 N(2)和四个 H(2)分子的反应,以及从氢气和氮气分子形成肼。通过分析这些体系中 H(2)添加步骤的性质,解释了“裸露”和 MgO 吸附的 Zr(2)Pd(2)团簇的反应性差异。