Suppr超能文献

Au³⁺、Au⁴⁺、Au⁵⁺和Au⁵⁻在H₂与O₂气相反应生成过氧化氢中的催化活性比较:密度泛函理论研究

Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.

作者信息

Joshi Ajay M, Delgass W Nicholas, Thomson Kendall T

机构信息

School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

J Phys Chem B. 2005 Dec 1;109(47):22392-406. doi: 10.1021/jp052653d.

Abstract

We report a detailed density functional theory (B3LYP) analysis of the gas-phase H2O2 formation from H2 and O2 on Au3, Au4+, Au5, and Au5-. We find that H2, which interacts only weakly with the Au clusters, is dissociatively added across the Au-O bond, upon interaction with AunO2. One H atom is captured by the adsorbed O2 to form the hydroperoxy intermediate (OOH), while the other H atom is captured by the Au atom. Once formed, the hydroperoxy intermediate acts as a precursor for the closed-loop catalytic cycle. An important common feature of all the pathways is that the rate-determining step of the catalytic cycle is the second H2 addition to form H2O2. The H2O2 desorption is followed by O2 addition to AunH2 to form the hydroperoxy intermediate, thus leading to the closure of the cycle. On the basis of the Gibbs free energy of activation, out of these four clusters, Au4+ is most active for the formation of the H2O2. The 0 K electronic energy of activation and the DeltaGact at the standard conditions are 12.6 and 16.6 kcal/mol respectively. The natural bond orbital charge analysis suggests that the Au clusters remain positively charged (oxidic) in almost all the stages of the cycle. This is interesting in the context of the recent experimental evidence for the activity of cationic Au in CO oxidation and water-gas shift catalysts. We have also found preliminary evidence for a correlation between the activation barrier for the first H2 addition and the O2 binding energy on the Au cluster. It suggests that the minimum activation barrier for the first H2 addition is expected for the Au clusters with 7.0-9.0 kcal/mol O2 binding energy, i.e., in the midrange of the expected interaction energy. This represents a balance between more favorable H2 dissociation when the Aun-O2 interaction is weaker and high O2 coverage when the interaction is stronger. On the basis of this work, we predict that the hydroperoxy intermediate formation can be both thermodynamically and kinetically viable only in a narrow range of the O2 binding energy (10.0-12.0 kcal/mol)-a useful estimate for computationally screening Au-cluster-based catalysts. We also show that a competitive channel for the OOH desorption exists. Thus, in propylene epoxidation both OOH radicals and H2O2 can attack the active Ti in/on the Au/TS-1 and generate the Ti-OOH sites, which can convert propylene to propylene oxide.

摘要

我们报告了一项关于在Au3、Au4+、Au5和Au5-上由H2和O2气相形成H2O2的详细密度泛函理论(B3LYP)分析。我们发现,与金团簇相互作用较弱的H2在与AunO2相互作用时,会通过Au - O键进行解离加成。一个H原子被吸附的O2捕获形成氢过氧中间体(OOH),而另一个H原子被Au原子捕获。一旦形成,氢过氧中间体就作为闭环催化循环的前体。所有途径的一个重要共同特征是催化循环的速率决定步骤是第二次H2加成形成H2O2。H2O2解吸之后是O2加成到AunH2上形成氢过氧中间体,从而导致循环闭合。基于吉布斯自由能活化能,在这四个团簇中,Au4+对H2O2的形成最具活性。0 K时的电子活化能和标准条件下的ΔGact分别为12.6和16.6 kcal/mol。自然键轨道电荷分析表明,金团簇在循环的几乎所有阶段都保持带正电(氧化态)。结合最近关于阳离子Au在CO氧化和水煤气变换催化剂中活性的实验证据,这一点很有趣。我们还发现了初步证据,表明第一次H2加成的活化能垒与金团簇上的O2结合能之间存在相关性。这表明,对于O2结合能为7.0 - 9.0 kcal/mol的金团簇,即在所预期相互作用能的中间范围内,预计第一次H2加成的活化能垒最小。这代表了一种平衡,当Aun - O2相互作用较弱时,H2解离更有利;而当相互作用较强时,O2覆盖率较高。基于这项工作,我们预测只有在O2结合能的狭窄范围内(10.0 - 12.0 kcal/mol),氢过氧中间体的形成在热力学和动力学上才是可行的——这对于基于金团簇的催化剂的计算筛选是一个有用的估计。我们还表明存在OOH解吸的竞争通道。因此,在丙烯环氧化反应中,OOH自由基和H2O2都可以攻击Au/TS - 1上/中的活性Ti并生成Ti - OOH位点,这些位点可以将丙烯转化为环氧丙烷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验