Division of Plant Biology, Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland.
Plant J. 2010 May;62(3):442-53. doi: 10.1111/j.1365-313X.2010.04159.x. Epub 2010 Feb 1.
The air pollutant ozone can be used as a tool to unravel in planta processes induced by reactive oxygen species (ROS). Here, we have utilized ozone to study ROS-dependent stomatal signaling. We show that the ozone-triggered rapid transient decrease (RTD) in stomatal conductance coincided with a burst of ROS in guard cells. RTD was present in 11 different Arabidopsis ecotypes, suggesting that it is a genetically robust response. To study which signaling components or ion channels were involved in RTD, we tested 44 mutants deficient in various aspects of stomatal function. This revealed that the SLAC1 protein, essential for guard cell plasma membrane S-type anion channel function, and the protein kinase OST1 were required for the ROS-induced fast stomatal closure. We showed a physical interaction between OST1 and SLAC1, and provide evidence that SLAC1 is phosphorylated by OST1. Phosphoproteomic experiments indicated that OST1 phosphorylated multiple amino acids in the N terminus of SLAC1. Using TILLING we identified three new slac1 alleles where predicted phosphosites were mutated. The lack of RTD in two of them, slac1-7 (S120F) and slac1-8 (S146F), suggested that these serine residues were important for the activation of SLAC1. Mass-spectrometry analysis combined with site-directed mutagenesis and phosphorylation assays, however, showed that only S120 was a specific phosphorylation site for OST1. The absence of the RTD in the dominant-negative mutants abi1-1 and abi2-1 also suggested a regulatory role for the protein phosphatases ABI1 and ABI2 in the ROS-induced activation of the S-type anion channel.
空气污染物臭氧可以被用作一种工具,以揭示由活性氧物种(ROS)诱导的植物体内过程。在这里,我们利用臭氧来研究 ROS 依赖性的气孔信号。我们表明,臭氧触发的气孔导度快速瞬态下降(RTD)与保卫细胞中 ROS 的爆发同时发生。RTD 存在于 11 种不同的拟南芥生态型中,这表明它是一种具有遗传稳健性的反应。为了研究哪些信号成分或离子通道参与了 RTD,我们测试了 44 种在气孔功能的各个方面都有缺陷的突变体。这表明 SLAC1 蛋白,对于保卫细胞质膜 S 型阴离子通道功能是必需的,以及蛋白激酶 OST1 对于 ROS 诱导的快速气孔关闭是必需的。我们表明 OST1 和 SLAC1 之间存在物理相互作用,并提供证据表明 SLAC1 被 OST1 磷酸化。磷酸蛋白质组学实验表明,OST1 在 SLAC1 的 N 端磷酸化多个氨基酸。使用 TILLING,我们鉴定了三个新的 slac1 等位基因,其中预测的磷酸化位点发生了突变。其中两个 slac1-7(S120F)和 slac1-8(S146F)缺乏 RTD,表明这些丝氨酸残基对于 SLAC1 的激活很重要。然而,质谱分析与定点突变和磷酸化实验相结合表明,只有 S120 是 OST1 的特异性磷酸化位点。显性负突变体 abi1-1 和 abi2-1 中 RTD 的缺失也表明蛋白磷酸酶 ABI1 和 ABI2 在 ROS 诱导的 S 型阴离子通道激活中具有调节作用。