Suppr超能文献

涡旋与扑翼和鱼鳍的相互作用可能是不可预测的。

Vortex interactions with flapping wings and fins can be unpredictable.

机构信息

Experimental Zoology Group, Wageningen University, 6709 PG Wageningen, The Netherlands.

出版信息

Biol Lett. 2010 Jun 23;6(3):394-7. doi: 10.1098/rsbl.2009.0806. Epub 2010 Feb 3.

Abstract

As they fly or swim, many animals generate a wake of vortices with their flapping fins and wings that reveals the dynamics of their locomotion. Previous studies have shown that the dynamic interaction of vortices in the wake with fins and wings can increase propulsive force. Here, we explore whether the dynamics of the vortex interactions could affect the predictability of propulsive forces. We studied the dynamics of the interactions between a symmetrically and periodically pitching and heaving foil and the vortices in its wake, in a soap-film tunnel. The phase-locked movie sequences reveal that abundant chaotic vortex-wake interactions occur at high Strouhal numbers. These high numbers are representative for the fins and wings of near-hovering animals. The chaotic wake limits the forecast horizon of the corresponding force and moment integrals. By contrast, we find periodic vortex wakes with an unlimited forecast horizon for the lower Strouhal numbers (0.2-0.4) at which many animals cruise. These findings suggest that swimming and flying animals could control the predictability of vortex-wake interactions, and the corresponding propulsive forces with their fins and wings.

摘要

当动物飞行或游动时,它们拍打鳍和翅膀会产生尾迹涡,揭示了它们运动的动力学。以前的研究表明,尾迹中涡与鳍和翅膀的动态相互作用可以增加推进力。在这里,我们探讨了涡相互作用的动力学是否会影响推进力的可预测性。我们在肥皂膜隧道中研究了对称周期性俯仰和升沉翼片及其尾迹中涡的相互作用动力学。锁定相位的电影序列揭示了在高斯特劳哈尔数下大量混沌的涡尾迹相互作用。这些高数值代表了近乎悬停的动物的鳍和翅膀。混沌尾迹限制了相应力和力矩积分的预测范围。相比之下,我们发现周期性的涡尾迹在较低的斯特劳哈尔数(0.2-0.4)下具有无限的预测范围,许多动物在这个速度下巡航。这些发现表明,游泳和飞行的动物可以通过它们的鳍和翅膀来控制涡尾迹相互作用及其相应的推进力的可预测性。

相似文献

1
Vortex interactions with flapping wings and fins can be unpredictable.
Biol Lett. 2010 Jun 23;6(3):394-7. doi: 10.1098/rsbl.2009.0806. Epub 2010 Feb 3.
2
Vortex-wake interactions of a flapping foil that models animal swimming and flight.
J Exp Biol. 2008 Jan;211(Pt 2):267-73. doi: 10.1242/jeb.006155.
3
Efficient cruising for swimming and flying animals is dictated by fluid drag.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8116-8118. doi: 10.1073/pnas.1805941115. Epub 2018 Jun 18.
5
Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
Bioinspir Biomim. 2018 Sep 14;13(6):066003. doi: 10.1088/1748-3190/aadc31.
6
Three-dimensional vortex wake structure of flapping wings in hovering flight.
J R Soc Interface. 2013 Dec 11;11(91):20130984. doi: 10.1098/rsif.2013.0984. Print 2014 Feb 6.
7
Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.
PLoS One. 2014 Mar 14;9(3):e91040. doi: 10.1371/journal.pone.0091040. eCollection 2014.
8
Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
J R Soc Interface. 2012 Feb 7;9(67):292-303. doi: 10.1098/rsif.2011.0238. Epub 2011 Jun 15.
9
Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.
Bioinspir Biomim. 2016 Dec 6;12(1):016004. doi: 10.1088/1748-3190/12/1/016004.
10
Ground effect on the aerodynamics of three-dimensional hovering wings.
Bioinspir Biomim. 2016 Oct 25;11(6):066003. doi: 10.1088/1748-3190/11/5/066003.

引用本文的文献

1
Bridging two insect flight modes in evolution, physiology and robophysics.
Nature. 2023 Oct;622(7984):767-774. doi: 10.1038/s41586-023-06606-3. Epub 2023 Oct 4.
2
Passive dynamics regulates aperiodic transitions in flapping wing systems.
PNAS Nexus. 2023 Mar 22;2(4):pgad086. doi: 10.1093/pnasnexus/pgad086. eCollection 2023 Apr.
3
Surface tension dominates insect flight on fluid interfaces.
J Exp Biol. 2016 Mar;219(Pt 5):752-66. doi: 10.1242/jeb.127829.
5
A moving topic: control and dynamics of animal locomotion.
Biol Lett. 2010 Jun 23;6(3):387-8. doi: 10.1098/rsbl.2010.0294. Epub 2010 Apr 21.

本文引用的文献

1
Biofluiddynamic scaling of flapping, spinning and translating fins and wings.
J Exp Biol. 2009 Aug;212(Pt 16):2691-704. doi: 10.1242/jeb.022251.
3
Vortex-wake interactions of a flapping foil that models animal swimming and flight.
J Exp Biol. 2008 Jan;211(Pt 2):267-73. doi: 10.1242/jeb.006155.
4
A two-dimensional aerodynamic model of freely flying insects.
J Theor Biol. 2007 Aug 21;247(4):657-71. doi: 10.1016/j.jtbi.2007.03.012. Epub 2007 Mar 14.
5
Coherent locomotion as an attracting state for a free flapping body.
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11163-6. doi: 10.1073/pnas.0505064102. Epub 2005 Jul 29.
6
Fish exploiting vortices decrease muscle activity.
Science. 2003 Nov 28;302(5650):1566-9. doi: 10.1126/science.1088295.
7
Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency.
Nature. 2003 Oct 16;425(6959):707-11. doi: 10.1038/nature02000.
9
Wing rotation and the aerodynamic basis of insect flight.
Science. 1999 Jun 18;284(5422):1954-60. doi: 10.1126/science.284.5422.1954.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验