Mukundarajan Haripriya, Bardon Thibaut C, Kim Dong Hyun, Prakash Manu
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
École Polytechnique, Paris, Palaiseau 91128, France.
J Exp Biol. 2016 Mar;219(Pt 5):752-66. doi: 10.1242/jeb.127829.
Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air.
在二维空气 - 水界面上飞行,身体重量由表面张力支撑,这是一种独特的运动策略,非常适合水生环境。虽然之前在石蝇等水生昆虫中有所描述,但界面飞行的生物力学从未被分析过。在这里,我们报告了睡莲甲虫(Galerucella nymphaeae)的界面飞行行为,它们也是灵活的空中飞行者。我们提出了昆虫界面飞行的第一个定量生物力学模型,揭示了毛细管力、气动力和神经肌肉力之间复杂的相互作用。我们表明,睡莲甲虫利用它们的跗爪通过固定在爪子上的流体接触线附着在界面上。我们使用高速成像研究界面飞行轨迹的运动学,并构建了一个描述飞行动力学的数学模型。我们的结果表明,与睡莲甲虫相对较高速度的空中飞行相比,非线性表面张力使界面飞行在能量上更加昂贵,并导致这些状态下自然出现混沌动力学。我们确定了主导界面飞行的毛细管 - 重力波阻力和振荡表面张力的关键作用,表明与空气相比,空气 - 水界面为扑翼飞行提供了一个截然不同的力场。