Suppr超能文献

表面张力在昆虫于流体界面上飞行时起主导作用。

Surface tension dominates insect flight on fluid interfaces.

作者信息

Mukundarajan Haripriya, Bardon Thibaut C, Kim Dong Hyun, Prakash Manu

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.

École Polytechnique, Paris, Palaiseau 91128, France.

出版信息

J Exp Biol. 2016 Mar;219(Pt 5):752-66. doi: 10.1242/jeb.127829.

Abstract

Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air.

摘要

在二维空气 - 水界面上飞行,身体重量由表面张力支撑,这是一种独特的运动策略,非常适合水生环境。虽然之前在石蝇等水生昆虫中有所描述,但界面飞行的生物力学从未被分析过。在这里,我们报告了睡莲甲虫(Galerucella nymphaeae)的界面飞行行为,它们也是灵活的空中飞行者。我们提出了昆虫界面飞行的第一个定量生物力学模型,揭示了毛细管力、气动力和神经肌肉力之间复杂的相互作用。我们表明,睡莲甲虫利用它们的跗爪通过固定在爪子上的流体接触线附着在界面上。我们使用高速成像研究界面飞行轨迹的运动学,并构建了一个描述飞行动力学的数学模型。我们的结果表明,与睡莲甲虫相对较高速度的空中飞行相比,非线性表面张力使界面飞行在能量上更加昂贵,并导致这些状态下自然出现混沌动力学。我们确定了主导界面飞行的毛细管 - 重力波阻力和振荡表面张力的关键作用,表明与空气相比,空气 - 水界面为扑翼飞行提供了一个截然不同的力场。

相似文献

6
The management of fluid and wave resistances by whirligig beetles.旋转甲虫对液体和波浪阻力的控制。
J R Soc Interface. 2010 Feb 6;7(43):343-52. doi: 10.1098/rsif.2009.0210. Epub 2009 Jul 29.

本文引用的文献

2
Foraging at the edge of chaos: internal clock versus external forcing.在混沌边缘觅食:内部时钟与外部强迫。
Phys Rev Lett. 2013 Jun 28;110(26):268104. doi: 10.1103/PhysRevLett.110.268104. Epub 2013 Jun 27.
4
Turbulent shear spurs settlement in larval sea urchins.紊流剪切促进了幼海胆的沉降。
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6901-6. doi: 10.1073/pnas.1220680110. Epub 2013 Apr 9.
7
Animal aloft: the origins of aerial behavior and flight.动物翱翔:空中行为和飞行的起源。
Integr Comp Biol. 2011 Dec;51(6):926-36. doi: 10.1093/icb/icr002. Epub 2011 Mar 4.
9
Self-consistent theory of capillary-gravity-wave generation by small moving objects.小运动物体产生毛细重力波的自洽理论。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 2):016306. doi: 10.1103/PhysRevE.81.016306. Epub 2010 Jan 12.
10
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.通过诱导果蝇空中失足来发现其飞行自动稳定器。
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验