Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
J Neurosci. 2010 Feb 3;30(5):1810-21. doi: 10.1523/JNEUROSCI.5261-09.2010.
Tauopathy comprises hyperphosphorylation of the microtubule-associated protein tau, causing intracellular aggregation and accumulation as neurofibrillary tangles and neuropil treads. Some primary tauopathies are linked to mutations in the MAPT gene coding for protein tau, but most are sporadic with unknown causes. Also, in Alzheimer's disease, the most frequent secondary tauopathy, neither the cause nor the pathological mechanisms and repercussions are understood. Transgenic mice expressing mutant Tau-P301L suffer cognitive and motor defects and die prematurely from unknown causes. Here, in situ electrophysiology in symptomatic Tau-P301L mice (7-8 months of age) revealed reduced postinspiratory discharges of laryngeal motor outputs that control laryngeal constrictor muscles. Under high chemical drive (hypercapnia), postinspiratory discharge was nearly abolished, whereas laryngeal inspiratory discharge was increased disproportionally. The latter may suggest a shift of postinspiratory laryngeal constrictor activity into inspiration. In vivo double-chamber plethysmography of Tau-P301L mice showed significantly reduced respiratory airflow but significantly increased chest movements during baseline breathing, but particularly in hypercapnia, confirming a significant increase in inspiratory resistive load. Histological analysis demonstrated hyperphosphorylated tau in brainstem nuclei, directly or indirectly involved in upper airway motor control (i.e., the Kölliker-Fuse, periaqueductal gray, and intermediate reticular nuclei). In contrast, young Tau-P301L mice did not show breathing disorders or brainstem tauopathy. Consequently, in aging Tau-P301L mice, progressive upper airway dysfunction is linked to progressive tauopathy in identified neural circuits. Because patients with tauopathy suffer from upper airway dysfunction, the Tau-P301L mice can serve as an experimental model to study disease-specific synaptic dysfunction in well defined functional neural circuits.
tau 病包括微管相关蛋白 tau 的过度磷酸化,导致细胞内聚集和积累,形成神经原纤维缠结和神经毡小径。一些原发性 tau 病与编码蛋白 tau 的 MAPT 基因突变有关,但大多数是散发性的,原因不明。此外,在阿尔茨海默病中,最常见的继发性 tau 病,其病因、病理机制和后果都不清楚。表达突变型 Tau-P301L 的转基因小鼠表现出认知和运动缺陷,并因不明原因过早死亡。在这里,在有症状的 Tau-P301L 小鼠(7-8 月龄)中进行的原位电生理学研究显示,控制喉缩肌的喉运动输出的后吸气放电减少。在高化学驱动(高碳酸血症)下,后吸气放电几乎被消除,而喉吸气放电不成比例地增加。后者可能表明后吸气喉缩肌活动转移到吸气中。在 Tau-P301L 小鼠的体内双室测压法中,发现呼吸气流明显减少,但在基础呼吸时胸部运动明显增加,特别是在高碳酸血症时,吸气阻力负荷明显增加。组织学分析显示脑干核中存在过度磷酸化的 tau,这些核直接或间接地参与上气道运动控制(即 Kölliker-Fuse、导水管周围灰质和中间网状核)。相比之下,年轻的 Tau-P301L 小鼠没有出现呼吸障碍或脑干 tau 病。因此,在衰老的 Tau-P301L 小鼠中,进行性上气道功能障碍与已识别的神经回路中进行性 tau 病有关。由于 tau 病患者存在上气道功能障碍,因此 Tau-P301L 小鼠可以作为研究特定于疾病的突触功能障碍的实验模型,这些功能障碍存在于明确的功能性神经回路中。