Suppr超能文献

基于触须的头部固定小鼠物体定位。

Vibrissa-based object localization in head-fixed mice.

机构信息

Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.

出版信息

J Neurosci. 2010 Feb 3;30(5):1947-67. doi: 10.1523/JNEUROSCI.3762-09.2010.

Abstract

Linking activity in specific cell types with perception, cognition, and action, requires quantitative behavioral experiments in genetic model systems such as the mouse. In head-fixed primates, the combination of precise stimulus control, monitoring of motor output, and physiological recordings over large numbers of trials are the foundation on which many conceptually rich and quantitative studies have been built. Choice-based, quantitative behavioral paradigms for head-fixed mice have not been described previously. Here, we report a somatosensory absolute object localization task for head-fixed mice. Mice actively used their mystacial vibrissae (whiskers) to sense the location of a vertical pole presented to one side of the head and reported with licking whether the pole was in a target (go) or a distracter (no-go) location. Mice performed hundreds of trials with high performance (>90% correct) and localized to <0.95 mm (<6 degrees of azimuthal angle). Learning occurred over 1-2 weeks and was observed both within and across sessions. Mice could perform object localization with single whiskers. Silencing barrel cortex abolished performance to chance levels. We measured whisker movement and shape for thousands of trials. Mice moved their whiskers in a highly directed, asymmetric manner, focusing on the target location. Translation of the base of the whiskers along the face contributed substantially to whisker movements. Mice tended to maximize contact with the go (rewarded) stimulus while minimizing contact with the no-go stimulus. We conjecture that this may amplify differences in evoked neural activity between trial types.

摘要

将特定细胞类型的活动与感知、认知和行为联系起来,需要在遗传模式系统(如小鼠)中进行定量行为实验。在头部固定的灵长类动物中,精确的刺激控制、运动输出的监测以及大量试验中的生理记录的结合,是许多概念丰富和定量研究的基础。以前没有描述过用于头部固定小鼠的基于选择的、定量行为范式。在这里,我们报告了一个用于头部固定小鼠的感觉绝对物体定位任务。小鼠主动使用它们的面部触须(胡须)来感知垂直杆在头部一侧的位置,并通过舔舐报告杆是否位于目标(去)或分心(不去)位置。小鼠在数百次试验中表现出高绩效(>90%的正确率),并将定位精度控制在<0.95 毫米(<6 度的方位角)以内。学习发生在 1-2 周内,并且在单次试验和多次试验中都能观察到。小鼠可以用单个触须进行物体定位。沉默皮层感觉区会使性能降至随机水平。我们对数以千计的试验进行了触须运动和形状的测量。小鼠以高度定向、不对称的方式移动它们的触须,集中在目标位置。触须基部沿面部的平移对触须运动有很大贡献。小鼠倾向于最大限度地接触到目标(奖励)刺激,同时最小化与不目标刺激的接触。我们推测,这可能会放大不同试验类型之间诱发的神经活动的差异。

相似文献

1
Vibrissa-based object localization in head-fixed mice.
J Neurosci. 2010 Feb 3;30(5):1947-67. doi: 10.1523/JNEUROSCI.3762-09.2010.
2
The Sensorimotor Basis of Whisker-Guided Anteroposterior Object Localization in Head-Fixed Mice.
Curr Biol. 2019 Sep 23;29(18):3029-3040.e4. doi: 10.1016/j.cub.2019.07.068. Epub 2019 Aug 29.
3
Tracking whisker and head movements in unrestrained behaving rodents.
J Neurophysiol. 2005 Apr;93(4):2294-301. doi: 10.1152/jn.00718.2004. Epub 2004 Nov 24.
4
Comparison of bilateral whisker movement in freely exploring and head-fixed adult rats.
Somatosens Mot Res. 2005 Sep;22(3):97-114. doi: 10.1080/08990220400015375.
5
Bilateral Discrimination of Tactile Patterns without Whisking in Freely Running Rats.
J Neurosci. 2017 Aug 9;37(32):7567-7579. doi: 10.1523/JNEUROSCI.0528-17.2017. Epub 2017 Jun 29.
6
Whisking Asymmetry Signals Motor Preparation and the Behavioral State of Mice.
J Neurosci. 2019 Dec 4;39(49):9818-9830. doi: 10.1523/JNEUROSCI.1809-19.2019. Epub 2019 Oct 30.
7
Activity in motor-sensory projections reveals distributed coding in somatosensation.
Nature. 2012 Sep 13;489(7415):299-303. doi: 10.1038/nature11321.
8
Structure, function, and cortical representation of the rat submandibular whisker trident.
J Neurosci. 2013 Mar 13;33(11):4815-24. doi: 10.1523/JNEUROSCI.4770-12.2013.
9
The mechanical variables underlying object localization along the axis of the whisker.
J Neurosci. 2013 Apr 17;33(16):6726-41. doi: 10.1523/JNEUROSCI.4316-12.2013.
10
Topography of rodent whisking--I. Two-dimensional monitoring of whisker movements.
Somatosens Mot Res. 2002;19(4):341-6. doi: 10.1080/0899022021000037809.

引用本文的文献

1
Syngap1 promotes cognitive function through regulation of cortical sensorimotor dynamics.
Nat Commun. 2025 Jan 18;16(1):812. doi: 10.1038/s41467-025-56125-0.
2
Sensory adaptation in the barrel cortex during active sensation in the behaving mouse.
Sci Rep. 2024 Sep 16;14(1):21588. doi: 10.1038/s41598-024-70524-1.
3
Sound-seeking before and after hearing loss in mice.
Sci Rep. 2024 Aug 19;14(1):19181. doi: 10.1038/s41598-024-67577-7.
4
Perirhinal cortex learns a predictive map of the task environment.
Nat Commun. 2024 Jul 2;15(1):5544. doi: 10.1038/s41467-024-47365-7.
5
Reliability and stability of tactile perception in the whisker somatosensory system.
Front Neurosci. 2024 May 30;18:1344758. doi: 10.3389/fnins.2024.1344758. eCollection 2024.
6
Stimulus information guides the emergence of behavior-related signals in primary somatosensory cortex during learning.
Cell Rep. 2024 Jun 25;43(6):114244. doi: 10.1016/j.celrep.2024.114244. Epub 2024 May 25.
7
Tactile processing in mouse cortex depends on action context.
Cell Rep. 2024 Apr 23;43(4):113991. doi: 10.1016/j.celrep.2024.113991. Epub 2024 Apr 3.
8
9
Sound-seeking before and after hearing loss in mice.
bioRxiv. 2024 Jan 9:2024.01.08.574475. doi: 10.1101/2024.01.08.574475.
10
Global and local neuronal coding of tactile information in the barrel cortex.
Front Neurosci. 2024 Jan 5;17:1291864. doi: 10.3389/fnins.2023.1291864. eCollection 2023.

本文引用的文献

1
On edge detection.
IEEE Trans Pattern Anal Mach Intell. 1986 Feb;8(2):147-63. doi: 10.1109/tpami.1986.4767769.
2
Reverse engineering the mouse brain.
Nature. 2009 Oct 15;461(7266):923-9. doi: 10.1038/nature08539.
3
Engaging in an auditory task suppresses responses in auditory cortex.
Nat Neurosci. 2009 May;12(5):646-54. doi: 10.1038/nn.2306. Epub 2009 Apr 12.
4
Psychophysical and neurometric detection performance under stimulus uncertainty.
Nat Neurosci. 2008 Sep;11(9):1091-9. doi: 10.1038/nn.2162.
5
Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation.
J Neurophysiol. 2008 Oct;100(4):1879-84. doi: 10.1152/jn.90511.2008. Epub 2008 Aug 6.
6
'Where' and 'what' in the whisker sensorimotor system.
Nat Rev Neurosci. 2008 Aug;9(8):601-12. doi: 10.1038/nrn2411.
7
Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice.
Nature. 2008 Aug 14;454(7206):881-5. doi: 10.1038/nature07150. Epub 2008 Jul 16.
8
Unsupervised whisker tracking in unrestrained behaving animals.
J Neurophysiol. 2008 Jul;100(1):504-15. doi: 10.1152/jn.00012.2008. Epub 2008 May 7.
9
Variability in velocity profiles during free-air whisking behavior of unrestrained rats.
J Neurophysiol. 2008 Aug;100(2):740-52. doi: 10.1152/jn.01295.2007. Epub 2008 Apr 24.
10
Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity.
J Neurosci. 2008 Mar 26;28(13):3438-55. doi: 10.1523/JNEUROSCI.5008-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验