Suppr超能文献

大鼠触须运动装置的生物力学:节律性触须摆动由三相神经肌肉活动组成。

Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity.

作者信息

Hill Dan N, Bermejo Roberto, Zeigler H Philip, Kleinfeld David

机构信息

Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA.

出版信息

J Neurosci. 2008 Mar 26;28(13):3438-55. doi: 10.1523/JNEUROSCI.5008-07.2008.

Abstract

The biomechanics of a motor plant constrain the behavioral strategies that an animal has available to extract information from its environment. We used the rat vibrissa system as a model for active sensing and determined the pattern of muscle activity that drives rhythmic exploratory whisking. Our approach made use of electromyography to measure the activation of all relevant muscles in both head-fixed and unrestrained rats and two-dimensional imaging to monitor the position of the vibrissae in head-fixed rats. Our essential finding is that the periodic motion of the vibrissae and mystacial pad during whisking results from three phases of muscle activity. First, the vibrissae are thrust forward as the rostral extrinsic muscle, musculus (m.) nasalis, contracts to pull the pad and initiate protraction. Second, late in protraction, the intrinsic muscles pivot the vibrissae farther forward. Third, retraction involves the cessation of m. nasalis and intrinsic muscle activity and the contraction of the caudal extrinsic muscles m. nasolabialis and m. maxillolabialis to pull the pad and the vibrissae backward. We developed a biomechanical model of the whisking motor plant that incorporates the measured muscular mechanics along with movement vectors observed from direct muscle stimulation in anesthetized rats. The results of simulations of the model quantify how the combination of extrinsic and intrinsic muscle activity leads to an enhanced range of vibrissa motion than would be available from the intrinsic muscles alone.

摘要

运动器官的生物力学限制了动物从环境中获取信息时可采用的行为策略。我们将大鼠的触须系统作为主动感知的模型,并确定了驱动节律性探索性触须运动的肌肉活动模式。我们的方法利用肌电图来测量头部固定和自由活动大鼠中所有相关肌肉的激活情况,并利用二维成像来监测头部固定大鼠中触须的位置。我们的主要发现是,触须运动期间触须和触须垫的周期性运动源于肌肉活动的三个阶段。首先,随着吻侧外在肌鼻肌收缩以拉动触须垫并启动前伸,触须向前推进。其次,在前伸后期,内在肌将触须进一步向前转动。第三,回缩涉及鼻肌和内在肌活动的停止,以及尾侧外在肌鼻唇肌和上颌唇肌的收缩,以将触须垫和触须向后拉动。我们开发了一个触须运动器官的生物力学模型,该模型结合了测量到的肌肉力学以及从麻醉大鼠的直接肌肉刺激中观察到的运动向量。该模型的模拟结果量化了外在肌和内在肌活动的组合如何导致触须运动范围比仅由内在肌产生的运动范围更大。

相似文献

1
Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity.
J Neurosci. 2008 Mar 26;28(13):3438-55. doi: 10.1523/JNEUROSCI.5008-07.2008.
4
Interaction between muscles and fascia in the mystacial pad of whisking rodents.
Anat Rec (Hoboken). 2021 Feb;304(2):400-412. doi: 10.1002/ar.24409. Epub 2020 Jun 14.
5
Relation between activities of the cortex and vibrissae muscles during high-voltage rhythmic spike discharges in rats.
J Neurophysiol. 2005 May;93(5):2435-48. doi: 10.1152/jn.00999.2004. Epub 2004 Dec 29.
6
Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat.
J Neurophysiol. 2004 Sep;92(3):1700-7. doi: 10.1152/jn.00020.2004. Epub 2004 Apr 7.
7
The Musculature That Drives Active Touch by Vibrissae and Nose in Mice.
Anat Rec (Hoboken). 2015 Jul;298(7):1347-58. doi: 10.1002/ar.23102. Epub 2014 Dec 5.
8
Electromyographic activity of mystacial pad musculature during whisking behavior in the rat.
Somatosens Mot Res. 1991;8(2):159-64. doi: 10.3109/08990229109144740.
9
Unilateral vibrissa contact: changes in amplitude but not timing of rhythmic whisking.
Somatosens Mot Res. 2003;20(2):163-9. doi: 10.1080/08990220311000405208.
10
Anatomical loops and their electrical dynamics in relation to whisking by rat.
Somatosens Mot Res. 1999;16(2):69-88. doi: 10.1080/08990229970528.

引用本文的文献

1
Biomechanical simplification of the motor control of whisking.
bioRxiv. 2025 Jun 21:2025.06.21.660818. doi: 10.1101/2025.06.21.660818.
2
Multiple cortical systems influence a single vibrissa muscle.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2503325122. doi: 10.1073/pnas.2503325122. Epub 2025 Jun 3.
3
Three-dimensional architecture and linearized mapping of vibrissa follicle afferents.
Nat Commun. 2025 Jan 8;16(1):499. doi: 10.1038/s41467-024-55468-4.
4
Global and local neuronal coding of tactile information in the barrel cortex.
Front Neurosci. 2024 Jan 5;17:1291864. doi: 10.3389/fnins.2023.1291864. eCollection 2023.
5
Low- and high-level coordination of orofacial motor actions.
Curr Opin Neurobiol. 2023 Dec;83:102784. doi: 10.1016/j.conb.2023.102784. Epub 2023 Sep 25.
6
A change in behavioral state switches the pattern of motor output that underlies rhythmic head and orofacial movements.
Curr Biol. 2023 May 22;33(10):1951-1966.e6. doi: 10.1016/j.cub.2023.04.008. Epub 2023 Apr 26.
7
Theory of hierarchically organized neuronal oscillator dynamics that mediate rodent rhythmic whisking.
Neuron. 2022 Nov 16;110(22):3833-3851.e22. doi: 10.1016/j.neuron.2022.08.020. Epub 2022 Sep 15.
8
Of mice and monkeys: Somatosensory processing in two prominent animal models.
Prog Neurobiol. 2021 Jun;201:102008. doi: 10.1016/j.pneurobio.2021.102008. Epub 2021 Feb 12.
9
Body language signals for rodent social communication.
Curr Opin Neurobiol. 2021 Jun;68:91-106. doi: 10.1016/j.conb.2021.01.008. Epub 2021 Feb 11.
10
Predictive whisker kinematics reveal context-dependent sensorimotor strategies.
PLoS Biol. 2020 May 26;18(5):e3000571. doi: 10.1371/journal.pbio.3000571. eCollection 2020 May.

本文引用的文献

2
Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact.
Proc Biol Sci. 2007 Apr 22;274(1613):1035-41. doi: 10.1098/rspb.2006.0347.
3
Stimulus frequency processing in awake rat barrel cortex.
J Neurosci. 2006 Nov 22;26(47):12198-205. doi: 10.1523/JNEUROSCI.2620-06.2006.
5
Biomechanics: robotic whiskers used to sense features.
Nature. 2006 Oct 5;443(7111):525. doi: 10.1038/443525a.
6
Right-left asymmetries in the whisking behavior of rats anticipate head movements.
J Neurosci. 2006 Aug 23;26(34):8838-46. doi: 10.1523/JNEUROSCI.0581-06.2006.
7
Haptic object localization in the vibrissal system: behavior and performance.
J Neurosci. 2006 Aug 16;26(33):8451-64. doi: 10.1523/JNEUROSCI.1516-06.2006.
8
Active sensation: insights from the rodent vibrissa sensorimotor system.
Curr Opin Neurobiol. 2006 Aug;16(4):435-44. doi: 10.1016/j.conb.2006.06.009. Epub 2006 Jul 11.
9
Vibrissa myoclonus (rhythmic retractions) driven by resonance of excitatory networks in motor cortex.
J Neurophysiol. 2006 Oct;96(4):1691-8. doi: 10.1152/jn.00454.2006. Epub 2006 Jun 28.
10
Exploratory whisking by rat is not phase locked to the hippocampal theta rhythm.
J Neurosci. 2006 Jun 14;26(24):6518-22. doi: 10.1523/JNEUROSCI.0190-06.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验