Hill Dan N, Bermejo Roberto, Zeigler H Philip, Kleinfeld David
Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA.
J Neurosci. 2008 Mar 26;28(13):3438-55. doi: 10.1523/JNEUROSCI.5008-07.2008.
The biomechanics of a motor plant constrain the behavioral strategies that an animal has available to extract information from its environment. We used the rat vibrissa system as a model for active sensing and determined the pattern of muscle activity that drives rhythmic exploratory whisking. Our approach made use of electromyography to measure the activation of all relevant muscles in both head-fixed and unrestrained rats and two-dimensional imaging to monitor the position of the vibrissae in head-fixed rats. Our essential finding is that the periodic motion of the vibrissae and mystacial pad during whisking results from three phases of muscle activity. First, the vibrissae are thrust forward as the rostral extrinsic muscle, musculus (m.) nasalis, contracts to pull the pad and initiate protraction. Second, late in protraction, the intrinsic muscles pivot the vibrissae farther forward. Third, retraction involves the cessation of m. nasalis and intrinsic muscle activity and the contraction of the caudal extrinsic muscles m. nasolabialis and m. maxillolabialis to pull the pad and the vibrissae backward. We developed a biomechanical model of the whisking motor plant that incorporates the measured muscular mechanics along with movement vectors observed from direct muscle stimulation in anesthetized rats. The results of simulations of the model quantify how the combination of extrinsic and intrinsic muscle activity leads to an enhanced range of vibrissa motion than would be available from the intrinsic muscles alone.
运动器官的生物力学限制了动物从环境中获取信息时可采用的行为策略。我们将大鼠的触须系统作为主动感知的模型,并确定了驱动节律性探索性触须运动的肌肉活动模式。我们的方法利用肌电图来测量头部固定和自由活动大鼠中所有相关肌肉的激活情况,并利用二维成像来监测头部固定大鼠中触须的位置。我们的主要发现是,触须运动期间触须和触须垫的周期性运动源于肌肉活动的三个阶段。首先,随着吻侧外在肌鼻肌收缩以拉动触须垫并启动前伸,触须向前推进。其次,在前伸后期,内在肌将触须进一步向前转动。第三,回缩涉及鼻肌和内在肌活动的停止,以及尾侧外在肌鼻唇肌和上颌唇肌的收缩,以将触须垫和触须向后拉动。我们开发了一个触须运动器官的生物力学模型,该模型结合了测量到的肌肉力学以及从麻醉大鼠的直接肌肉刺激中观察到的运动向量。该模型的模拟结果量化了外在肌和内在肌活动的组合如何导致触须运动范围比仅由内在肌产生的运动范围更大。