Rehabilitation Institute of Chicago, IL 60611, USA.
Dev Med Child Neurol. 2010 Jun;52(6):563-9. doi: 10.1111/j.1469-8749.2009.03602.x. Epub 2010 Jan 28.
To evaluate spasticity under controlled velocities and torques in children with cerebral palsy (CP) using a manual spasticity evaluator.
The study involved 10 children with spastic CP (six males, four females; mean age 10 y 1 mo, SD 2 y 9 mo, range 7-16 y; one with quadriplegia, six with right hemiplegia, three with left hemiplegia; Gross Motor Function Classification System levels I [n=2], II [n=3], III [n=2], IV [n=2], and V [n=1]; Manual Ability Classification System levels II [n=5], III [n=4], and V [n=1]) and 10 typically developing participants (four males, six females; mean age 10 y 3 mo, SD 2 y 7 mo, range 7-15 y). Spasticity and catch angle were evaluated using joint position, resistance torque, and torque rate at velocities of 90 degrees, 180 degrees, and 270 degrees per second, controlled using real-time audio-visual feedback. Biomechanically, elbow range of motion (ROM), stiffness, and energy loss were determined during slow movement (30 degrees/s) and under controlled terminal torque.
Compared with typically developing children, children with CP showed higher reflex-mediated torque (p<0.001) and the torque increased more rapidly with increasing velocity (p<0.001). Catch angle was dependent on velocity and occurred later with increasing velocity (p=0.005). Children with CP showed smaller ROM (p<0.05), greater stiffness (p<0.001), and more energy loss (p=0.003).
Spasticity with velocity dependence may also be position-dependent. The delayed catch angle at higher velocities indicates that the greater resistance felt by the examiner at higher velocities was also due to position change, because the joint was moved further to a stiffer position at higher velocities.
使用手动痉挛评估器评估脑瘫(CP)患儿在受控速度和扭矩下的痉挛程度。
本研究纳入 10 名痉挛型 CP 患儿(6 名男性,4 名女性;平均年龄 10 岁 1 个月,标准差 2 岁 9 个月,范围 7-16 岁;1 名四肢瘫,6 名右侧偏瘫,3 名左侧偏瘫;粗大运动功能分类系统水平 I[2 例]、II[3 例]、III[2 例]、IV[2 例]和 V[1 例];手动能力分类系统水平 II[5 例]、III[4 例]和 V[1 例])和 10 名正常发育的参与者(4 名男性,6 名女性;平均年龄 10 岁 3 个月,标准差 2 岁 7 个月,范围 7-15 岁)。使用实时视听反馈控制,在速度为 90 度、180 度和 270 度每秒时,通过关节位置、阻力扭矩和扭矩率评估痉挛和捕获角度。在缓慢运动(30 度/秒)和受控终端扭矩下,确定肘部运动范围(ROM)、刚度和能量损失的生物力学特性。
与正常发育的儿童相比,CP 患儿的反射介导扭矩更高(p<0.001),并且随着速度的增加,扭矩增加得更快(p<0.001)。捕获角度依赖于速度,随着速度的增加而延迟(p=0.005)。CP 患儿的 ROM 更小(p<0.05),刚度更大(p<0.001),能量损失更多(p=0.003)。
与速度相关的痉挛也可能与位置相关。在较高速度下延迟的捕获角度表明,检查者感觉到的更大阻力也归因于位置变化,因为在较高速度下,关节被进一步移动到更僵硬的位置。