Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.
Magn Reson Imaging. 2010 Apr;28(3):418-26. doi: 10.1016/j.mri.2009.11.002. Epub 2010 Feb 4.
A model-based proton resonance frequency shift (PRFS) thermometry method was developed to significantly reduce the temperature quantification errors encountered in the conventional phase mapping method and the spatiotemporal limitations of the spectroscopic thermometry method. Spectral data acquired using multi-echo gradient echo (GRE) is fit into a two-component signal model containing temperature information and fat is used as the internal reference. The noniterative extended Prony algorithm is used for the signal fitting and frequency estimate. Monte Carlo simulations demonstrate the advantages of the method for optimal water-fat separation and temperature estimation accuracy. Phantom experiments demonstrate that the model-based method effectively reduces the interscan motion effects and frequency disturbances due to the main field drift. The thermometry result of ex vivo goose liver experiment with high intensity focused ultrasound (HIFU) heating was also presented in the paper to indicate the feasibility of the model-based method in real tissue.
提出了一种基于模型的质子共振频率偏移(PRFS)测温方法,以显著降低传统相位映射方法中遇到的温度定量误差和光谱测温方法的时空限制。使用多回波梯度回波(GRE)采集的光谱数据拟合包含温度信息的双组分信号模型,并使用脂肪作为内部参考。使用非迭代扩展 Prony 算法进行信号拟合和频率估计。蒙特卡罗模拟证明了该方法在最佳水脂分离和温度估计精度方面的优势。体模实验证明,该基于模型的方法有效地减少了由于主磁场漂移引起的扫描间运动效应和频率干扰。本文还介绍了高强度聚焦超声(HIFU)加热的离体鹅肝实验的测温结果,以表明基于模型的方法在实际组织中的可行性。