University of Utah, Salt Lake City, UT 84013, USA.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3864-9. doi: 10.1073/pnas.0906765107. Epub 2010 Feb 4.
Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths. Sensitivity at high stimulus strengths is linear and shows no evidence of amplification. Results suggest that the mechanical work done by hair cells contributes approximately 97 zJ/cell of amplification per stimulus cycle, improving sensitivity to angular velocity stimuli below approximately 5 degrees /s (0.3-Hz sinusoidal motion). We further show that mechanical amplification can be inhibited by the brain via activation of efferent synaptic contacts on hair cells. The experimental model was the oyster toadfish, Opsanus tau. Physiological manifestation of mechanical amplification and efferent control in a teleost vestibular organ suggests the active motor process in sensory hair cells is ancestral. The biophysical basis of the motor(s) remains hypothetical, but a key discriminating question may involve how changes in somatic electrical impedance evoked by efferent synaptic action alter function of the motor(s).
感觉毛细胞是内耳的重要机械换能器,不仅负责声音和运动刺激的转导,而且还显著地对感觉刺激进行纳米机械放大。在这里,我们表明,半规管毛细胞在体内产生机械非线性,通过在低刺激强度下的放大来提高对角运动的敏感性。在高刺激强度下,灵敏度呈线性,没有放大的证据。结果表明,毛细胞所做的机械功大约为每个刺激循环增加 97 zJ/细胞的放大,从而提高了对角速度刺激的敏感性,低于大约 5 度/秒(0.3-Hz 正弦运动)。我们进一步表明,通过激活毛细胞上的传出突触接触,大脑可以抑制机械放大。实验模型是牡蛎蟾鱼,Opsanus tau。机械放大和鱼的前庭器官中传出控制的生理表现表明,感觉毛细胞中的主动运动过程是原始的。运动的生物物理基础仍然是假设的,但一个关键的区分问题可能涉及传出突触作用引起的体细胞膜阻抗变化如何改变运动的功能。