Suppr超能文献

内耳液压力与半规管传入神经放电之间的关系。

Relationship between inner-ear fluid pressure and semicircular canal afferent nerve discharge.

作者信息

Yamauchi A, Rabbitt R D, Boyle R, Highstein S M

机构信息

Department of Bioengineering, University of Utah, Salt Lake City 84112, USA.

出版信息

J Assoc Res Otolaryngol. 2002 Mar;3(1):26-44. doi: 10.1007/s101620010088.

Abstract

The present study was designed to determine (1) the transcupular fluid pressure (deltaP) generated across the semicircular canal cupula in response to sinusoidal head rotation, (2) the translabyrinthine dilational pressure (P0) generated across the membranous labyrinth in response to an increase in endolymph fluid volume (hydrops), (3) afferent nerve discharge patterns generated by these distinct pressure stimuli and, (4) threshold values of deltaP and P0 required to elicit afferent neural responses. The experimental model was the oyster toadfish, Opsanus tau. Micromechanical indentation of the horizontal canal (HC) duct and utricular vestibule was used to simulate sinusoidal head rotation and fluid volume injection. Single-unit neural spike trains and endolymph pressure within the ampulla, on both sides of the cupula, were recorded simultaneously. deltaP averaged 0.013 Pa per 1 degrees/s of sinusoidal angular head velocity and P0 averaged 0.2 Pa per 1 nL of endolymph volume injection. The most responsive afferents had a threshold sensitivity to deltaP of 10(-3) Pa and to P0 of 5 x 10(-2) Pa based on a discharge modulation criterion of 1 impulse/s per cycle for 2 Hz pressure stimuli. Neural sensitivity to AP was expected on the basis of transverse cupular and hair bundle deflections. Analysis of mechanics of the end organ, neuronal projections into the crista, and individual neural firing patterns indicates that P0 sensitivity resulted from pressure-induced distension of the ampulla that led to a nonuniform cupular deformation pattern and hair bundle deflections. This explanation is consistent with predictions of a finite element model of the end organ. Results have implications regarding the role of deltaP in angular motion transduction and the role of P0 under transient hydropic conditions.

摘要

本研究旨在确定

(1) 半规管壶腹在正弦头旋转时产生的经壶腹流体压力(ΔP);(2) 内淋巴液体积增加(积水)时跨膜迷路产生的经迷路扩张压力(P0);(3) 这些不同压力刺激产生的传入神经放电模式;以及(4) 引发传入神经反应所需的ΔP和P0阈值。实验模型是牡蛎蟾鱼(Opsanus tau)。通过对水平半规管(HC)管道和椭圆囊前庭进行微机械压痕来模拟正弦头旋转和液体体积注入。同时记录壶腹两侧单个单位的神经冲动序列和内淋巴压力。正弦角头速度每1度/秒时,ΔP平均为0.013 Pa,内淋巴体积每注入1 nL时,P0平均为0.2 Pa。基于2 Hz压力刺激下每个周期1次冲动/秒的放电调制标准,反应最灵敏的传入神经对ΔP的阈值敏感性为10^(-3) Pa,对P0的阈值敏感性为5×^(-2) Pa。基于横向壶腹和毛束偏转,预期神经对AP敏感。对内耳终器力学、进入嵴的神经元投射以及单个神经放电模式的分析表明,P0敏感性是由壶腹压力诱导的扩张导致的,这种扩张导致了不均匀的壶腹变形模式和毛束偏转。这一解释与内耳终器有限元模型的预测一致。研究结果对ΔP在角运动转导中的作用以及P0在短暂积水条件下的作用具有启示意义。

相似文献

1
Relationship between inner-ear fluid pressure and semicircular canal afferent nerve discharge.
J Assoc Res Otolaryngol. 2002 Mar;3(1):26-44. doi: 10.1007/s101620010088.
2
Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics.
J Neurophysiol. 1999 Aug;82(2):1033-53. doi: 10.1152/jn.1999.82.2.1033.
4
How endolymph pressure modulates semicircular canal primary afferent discharge.
Ann N Y Acad Sci. 2001 Oct;942:313-21. doi: 10.1111/j.1749-6632.2001.tb03756.x.
5
Sensory transduction of head velocity and acceleration in the toadfish horizontal semicircular canal.
J Neurophysiol. 1994 Aug;72(2):1041-8. doi: 10.1152/jn.1994.72.2.1041.
6
Determinants of semicircular canal afferent response dynamics in the toadfish, Opsanus tau.
J Neurophysiol. 1996 Feb;75(2):575-96. doi: 10.1152/jn.1996.75.2.575.
7
Determinants of semicircular canal afferent response dynamics in fish.
Ann N Y Acad Sci. 1996 Jun 19;781:213-43. doi: 10.1111/j.1749-6632.1996.tb15703.x.
9
Dynamic displacement of normal and detached semicircular canal cupula.
J Assoc Res Otolaryngol. 2009 Dec;10(4):497-509. doi: 10.1007/s10162-009-0174-y. Epub 2009 Jun 10.
10
Mechanical properties and motion of the cupula of the human semicircular canal.
J Vestib Res. 2009;19(3-4):95-110. doi: 10.3233/VES-2009-0359.

引用本文的文献

1
Modeling of magnetic vestibular stimulation experienced during high-field clinical MRI.
Commun Med (Lond). 2025 Jan 21;5(1):27. doi: 10.1038/s43856-024-00667-9.
2
Study the biomechanical performance of the membranous semicircular canal based on bionic models.
Heliyon. 2022 May 23;8(5):e09480. doi: 10.1016/j.heliyon.2022.e09480. eCollection 2022 May.
3
Translations of Steinhausen's Publications Provide Insight Into Their Contributions to Peripheral Vestibular Neuroscience.
Front Neurol. 2021 Jun 4;12:676723. doi: 10.3389/fneur.2021.676723. eCollection 2021.
5
Computing Endolymph Hydrodynamics During Head Impulse Test on Normal and Hydropic Vestibular Labyrinth Models.
Front Neurol. 2020 Apr 21;11:289. doi: 10.3389/fneur.2020.00289. eCollection 2020.
6
Biomechanical Analysis of Angular Motion in Association with Bilateral Semicircular Canal Function.
Biophys J. 2020 Feb 4;118(3):729-741. doi: 10.1016/j.bpj.2019.12.007. Epub 2019 Dec 18.
7
Pulsatile nystagmus secondary to semicircular canal dehiscence.
BMJ Case Rep. 2018 Dec 22;11(1):e225963. doi: 10.1136/bcr-2018-225963.
8
Semicircular canal biomechanics in health and disease.
J Neurophysiol. 2019 Mar 1;121(3):732-755. doi: 10.1152/jn.00708.2018. Epub 2018 Dec 19.
9
Wave Mechanics of the Vestibular Semicircular Canals.
Biophys J. 2017 Sep 5;113(5):1133-1149. doi: 10.1016/j.bpj.2017.08.001.
10
Hydrostatic fluid pressure in the vestibular organ of the guinea pig.
Eur Arch Otorhinolaryngol. 2012 Jul;269(7):1755-8. doi: 10.1007/s00405-011-1813-6. Epub 2011 Nov 2.

本文引用的文献

1
Dynamic displacement of normal and detached semicircular canal cupula.
J Assoc Res Otolaryngol. 2009 Dec;10(4):497-509. doi: 10.1007/s10162-009-0174-y. Epub 2009 Jun 10.
2
Comparison of the perilymphatic and cerebrospinal fluid pressures.
Arch Otolaryngol. 1963 Jun;77:581-5. doi: 10.1001/archotol.1963.00750010599003.
4
Active hair bundle motion linked to fast transducer adaptation in auditory hair cells.
J Neurosci. 2000 Oct 1;20(19):7131-42. doi: 10.1523/JNEUROSCI.20-19-07131.2000.
5
Measurement of the mechanical compliance of the endolymphatic compartments in the guinea pig.
Hear Res. 2000 Jul;145(1-2):82-90. doi: 10.1016/s0378-5955(00)00078-2.
6
Deformations of the isolated mouse tectorial membrane produced by oscillatory forces.
Hear Res. 2000 Jun;144(1-2):29-46. doi: 10.1016/s0378-5955(00)00041-1.
7
Active hair-bundle movements can amplify a hair cell's response to oscillatory mechanical stimuli.
Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14306-11. doi: 10.1073/pnas.96.25.14306.
8
Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics.
J Neurophysiol. 1999 Aug;82(2):1033-53. doi: 10.1152/jn.1999.82.2.1033.
9
Directional coding of three-dimensional movements by the vestibular semicircular canals.
Biol Cybern. 1999 Jun;80(6):417-31. doi: 10.1007/s004220050536.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验