School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340, USA.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6610-5. doi: 10.1073/pnas.0911228107. Epub 2010 Feb 4.
A laser flash photolysis-resonance fluorescence technique has been employed to measure rate coefficients and physical vs. reactive quenching branching ratios for O((1)D) deactivation by three potent greenhouse gases, SO(2)F(2)(k(1)), NF(3)(k(2)), and SF(5)CF(3)(k(3)). In excellent agreement with one published study, we find that k(1)(T) = 9.0 x 10(-11) exp(+98/T) cm(3) molecule(-1) s(-1) and that the reactive quenching rate coefficient is k(1b) = (5.8 +/- 2.3) x 10(-11) cm(3) molecule(-1) s(-1) independent of temperature. We find that k(2)(T) = 2.0 x 10(-11) exp(+52/T) cm(3) molecule(-1) s(-1) with reaction proceeding almost entirely (approximately 99%) by reactive quenching. Reactive quenching of O((1)D) by NF(3) is more than a factor of two faster than reported in one published study, a result that will significantly lower the model-derived atmospheric lifetime and global warming potential of NF(3). Deactivation of O((1)D) by SF(5)CF(3) is slow enough (k(3) < 2.0 x 10(-13) cm(3) molecule(-1) s(-1) at 298 K) that reaction with O((1)D) is unimportant as an atmospheric removal mechanism for SF(5)CF(3). The kinetics of O((1)D) reactions with SO(2) (k(4)) and CS(2) (k(5)) have also been investigated at 298 K. We find that k(4) = (2.2 +/- 0.3) x 10(-10) and k(5) = (4.6 +/- 0.6) x 10(-10) cm(3) molecule(-1) s(-1); branching ratios for reactive quenching are 0.76 +/- 0.12 and 0.94 +/- 0.06 for the SO(2) and CS(2) reactions, respectively. All uncertainties reported above are estimates of accuracy (2sigma) and rate coefficients k(i)(T) (i = 1,2) calculated from the above Arrhenius expressions have estimated accuracies of +/- 15% (2sigma).
采用激光闪光光解-共振荧光技术,测量了三种强温室气体 SO2F2(k1)、NF3(k2)和 SF5CF3(k3)对 O((1)D)失活的速率系数和物理与反应猝灭分支比。与一项已发表的研究非常吻合,我们发现 k1(T)=9.0×10(-11) exp(+98/T)cm(3)分子(-1)s(-1),反应性猝灭速率系数 k1b=(5.8±2.3)×10(-11)cm(3)分子(-1)s(-1),且与温度无关。我们发现 k2(T)=2.0×10(-11) exp(+52/T)cm(3)分子(-1)s(-1),反应几乎完全通过反应性猝灭进行(约 99%)。NF3 对 O((1)D)的反应性猝灭比一项已发表研究报告的速度快两倍以上,这一结果将显著降低 NF(3)的大气寿命和全球变暖潜能。O((1)D)与 SF5CF3 的失活速度足够慢(k3<2.0×10(-13)cm(3)分子(-1)s(-1)在 298 K 时),因此反应不是 SF5CF3 作为大气去除机制的重要途径。在 298 K 时,还研究了 O((1)D)与 SO2(k4)和 CS2(k5)的反应动力学。我们发现 k4=(2.2±0.3)×10(-10)和 k5=(4.6±0.6)×10(-10)cm(3)分子(-1)s(-1);SO2 和 CS2 反应的反应性猝灭分支比分别为 0.76±0.12 和 0.94±0.06。以上所有报告的不确定性均为精度估计值(2sigma),由上述 Arrhenius 表达式计算得到的速率系数 k(i)(T)(i=1,2)的估计精度为±15%(2sigma)。