Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2397-402. doi: 10.1073/pnas.0908754107. Epub 2010 Jan 26.
Understanding the dynamics of large-scale conformational changes in proteins still poses a challenge for molecular simulations. We employ transition path sampling of explicit solvent molecular dynamics trajectories to obtain atomistic insight in the reaction network of the millisecond timescale partial unfolding transition in the photocycle of the bacterial sensor photoactive yellow protein. Likelihood maximization analysis predicts the best model for the reaction coordinates of each substep as well as tentative transition states, without further simulation. We find that the unfolding of the alpha-helical region 43-51 is followed by sequential solvent exposure of both Glu46 and the chromophore. Which of these two residues is exposed first is correlated with the presence of a salt bridge that is part of the N-terminal domain. Additional molecular dynamics simulations indicate that the exposure of the chromophore does not result in a productive pathway. We discuss several possibilities for experimental validation of these predictions. Our results open the way for studying millisecond conformational changes in other medium-sized (signaling) proteins.
理解蛋白质大规模构象变化的动力学仍然是分子模拟面临的挑战。我们采用显溶剂分子动力学轨迹的转移路径抽样方法,获得细菌传感器光致变色蛋白光循环中毫秒时间尺度部分解折叠跃迁反应网络的原子水平洞察力。似然最大化分析预测了每个子步骤反应坐标的最佳模型以及暂定的过渡态,而无需进一步模拟。我们发现,α-螺旋区域 43-51 的展开随后是 Glu46 和发色团的顺序溶剂暴露。这两个残基中哪一个先暴露与 N 端结构域中存在盐桥有关。额外的分子动力学模拟表明,发色团的暴露不会导致产生途径。我们讨论了验证这些预测的实验的几种可能性。我们的结果为研究其他中型(信号)蛋白质的毫秒构象变化开辟了道路。