Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, vvi, Flemingovo nám 2, 166 10 Prague 6, Czech Republic.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1966-70. doi: 10.1073/pnas.0911785107. Epub 2010 Jan 25.
Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B(26)). They show a structural convergence in the form of a new beta-turn at B(24)-B(26). We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the beta-turn at B(24)-B(26) associated with a trans to cis isomerisation at the B(25)-B(26) peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B(25)-B(26) peptide bond or by the insertion of certain D-amino acids at B(26). The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.
胰岛素是一种关键的蛋白质激素,可调节血糖水平,因此对脂质和蛋白质代谢有广泛影响。胰岛素的作用表现为其单体形式与胰岛素受体(IR)结合。然而,目前我们对胰岛素结构行为的了解是基于无活性的、多聚体的和储存样状态。与受体结合的活性单体结构必须不同,因为对相互作用至关重要的残基被埋藏在多聚体形式中。虽然胰岛素的诱导契合的确切性质尚不清楚,但有强有力的证据表明 B 链 C 末端是胰岛素激活和受体结合的动态元件。在这里,我们设计并分析了高度活跃(200-500%)的胰岛素类似物,这些类似物在 B 链的 26 位被截断(B(26))。它们以 B(24)-B(26)处新的β-转角的形式表现出结构收敛。我们提出,胰岛素从无活性状态向活性状态转变的关键因素可能是 B(24)-B(26)处β-转角的形成,同时 B(25)-B(26)肽键发生顺式-反式异构化。在这里,通过在 B(25)-B(26)肽键的反式到顺式转换处相邻的 N-甲基化 L-氨基酸或在 B(26)处插入某些 D-氨基酸来实现这种转折。这种构象变化使以前埋藏的氨基酸暴露出来,这些氨基酸与 IR 结合有关,并为对抗糖尿病的有效配体的合理设计提供了新的方法的结构细节。