Suppr超能文献

使用分子动力学模拟对胰岛素类似物的活性、动力学、能量学和构象进行的计算研究:在高胰岛素血症和关键残基B26中的应用。

Computational study of the activity, dynamics, energetics and conformations of insulin analogues using molecular dynamics simulations: Application to hyperinsulinemia and the critical residue B26.

作者信息

Papaioannou Anastasios, Kuyucak Serdar, Kuncic Zdenka

机构信息

Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.

School of Physics, University of Sydney, NSW, Australia.

出版信息

Biochem Biophys Rep. 2017 Apr 18;11:182-190. doi: 10.1016/j.bbrep.2017.04.006. eCollection 2017 Sep.

Abstract

Due to the increasing prevalence of diabetes, finding therapeutic analogues for insulin has become an urgent issue. While many experimental studies have been performed towards this end, they have limited scope to examine all aspects of the effect of a mutation. Computational studies can help to overcome these limitations, however, relatively few studies that focus on insulin analogues have been performed to date. Here, we present a comprehensive computational study of insulin analogues-three mutant insulins that have been identified with hyperinsulinemia and three mutations on the critical B26 residue that exhibit similar binding affinity to the insulin receptor-using molecular dynamics simulations with the aim of predicting how mutations of insulin affect its activity, dynamics, energetics and conformations. The time evolution of the conformers is studied in long simulations. The probability density function and potential of mean force calculations are performed on each insulin analogue to unravel the effect of mutations on the dynamics and energetics of insulin activation. Our conformational study can decrypt the key features and molecular mechanisms that are responsible for an enhanced or reduced activity of an insulin analogue. We find two key results: 1) hyperinsulinemia may be due to the drastically reduced activity (and binding affinity) of the mutant insulins. 2) Y26S and Y26E are promising therapeutic candidates for insulin as they are more active than WT-insulin. The analysis in this work can be readily applied to any set of mutations on insulin to guide development of more effective therapeutic analogues.

摘要

由于糖尿病的患病率不断上升,寻找胰岛素的治疗类似物已成为一个紧迫的问题。虽然为此已经进行了许多实验研究,但它们在研究突变效应的所有方面时范围有限。计算研究有助于克服这些局限性,然而,迄今为止,专注于胰岛素类似物的研究相对较少。在这里,我们通过分子动力学模拟,对胰岛素类似物——三种已被确定与高胰岛素血症相关的突变胰岛素以及在关键的B26残基上的三种表现出与胰岛素受体相似结合亲和力的突变——进行了全面的计算研究,目的是预测胰岛素突变如何影响其活性、动力学、能量学和构象。在长时间模拟中研究构象异构体的时间演化。对每种胰岛素类似物进行概率密度函数和平均力势计算,以揭示突变对胰岛素激活的动力学和能量学的影响。我们的构象研究可以解密导致胰岛素类似物活性增强或降低的关键特征和分子机制。我们发现两个关键结果:1)高胰岛素血症可能是由于突变胰岛素的活性(和结合亲和力)大幅降低所致。2)Y26S和Y26E是有前景的胰岛素治疗候选物,因为它们比野生型胰岛素更具活性。这项工作中的分析可以很容易地应用于胰岛素上的任何一组突变,以指导开发更有效的治疗类似物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67c7/5614686/702f4dabe1a1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验