Department of Physics, P.O. Box 48, University of Helsinki, FI-00014 Helsinki, Finland.
J Phys Chem A. 2010 Mar 4;114(8):2821-9. doi: 10.1021/jp9086656.
Observations often reveal large clear-sky upper tropospheric ice supersaturation, S(i), which sometimes reaches 100%. However, a water activity criterion (Nature 2000, 406, 611) does not allow the buildup of large S(i) by cooled aqueous aerosol. According to the criterion, S(i) produced by aqueous aerosol increases from approximately 52% at 220 K to only approximately 67% at 185 K. The nature of the formation of large upper tropospheric S(i) remains unclear. Here we present the results of the study of micrometer-scaled three-, four-, and five-component droplets containing different weight fractions of H(2)O, H(2)SO(4), HNO(3), (NH(4))(2)SO(4), (NH(4))HSO(4), NH(4)NO(3), and (NH(4))(3)H(SO(4))(2). The study was performed between 133 and 278 K at cooling rates of 3, 0.1, and 0.05 K/min using differential scanning calorimetery. We find that complex phase transformations, which include one, two, and three freezing and melting events, glass transition on cooling, and devitrification and crystallization-freezing on warming, can occur during the cooling and warming of droplets. Using the measured freezing temperature of ice, T(i), and the thermodynamic E-AIM model, we calculate the largest clear-sky S(i) which would be formed immediately prior to the formation of ice cirrus by homogeneous freezing of multicomponent aerosol. The calculations show that multicomponent aerosol of some compositions may produce S(i) >80% at temperatures higher than 185 K. We also find that similar to that of H(2)SO(4)/H(2)O and H(2)SO(4)/HNO(3)/H(2)O aerosol the freezing of multicomponent aerosol can also produce mixed-phase cirrus particles: an ice core + a residual solution coating.
观测经常揭示出晴空上部对流层中很大的过饱和度 S(i),其值有时可达 100%。然而,水活度标准(《自然》2000,406,611)不允许冷却的含水气溶胶积聚大量的 S(i)。根据该标准,由含水气溶胶产生的 S(i)在 220 K 时从大约 52%增加到 185 K 时仅约 67%。晴空上部对流层中很大的 S(i)形成的性质仍不清楚。在这里,我们给出了含有不同重量分数的 H(2)O、H(2)SO(4)、HNO(3)、(NH(4))(2)SO(4)、(NH(4))HSO(4)、NH(4)NO(3)和(NH(4))(3)H(SO(4))(2)的三、四和五组分液滴的微米级研究结果。研究在 133 和 278 K 之间,冷却速率为 3、0.1 和 0.05 K/min,使用差示扫描量热法进行。我们发现,在液滴的冷却和升温过程中,可能发生复杂的相变,包括一个、两个和三个冻结和融化事件、冷却时的玻璃化转变、升温时的脱玻璃化和结晶-冻结。利用测量的冰的冻结温度 T(i)和热力学 E-AIM 模型,我们计算了在多组分气溶胶均匀冻结形成冰卷云之前立即形成的最大晴空 S(i)。计算表明,某些成分的多组分气溶胶在高于 185 K 的温度下可能产生 S(i)>80%。我们还发现,类似于 H(2)SO(4)/H(2)O 和 H(2)SO(4)/HNO(3)/H(2)O 气溶胶,多组分气溶胶的冻结也可以产生混合相卷云粒子:冰芯+残留溶液涂层。