Suppr超能文献

超声对红细胞聚集与介入衰减组织模拟体的特征描述。

Ultrasound characterization of red blood cell aggregation with intervening attenuating tissue-mimicking phantoms.

机构信息

Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Pavillon JA de Seve Room Y-1619, 2099 Alexandre de Seve, Montreal, Quebec H2L 2W5, Canada.

出版信息

J Acoust Soc Am. 2010 Feb;127(2):1104-15. doi: 10.1121/1.3277200.

Abstract

The analysis of the ultrasonic frequency-dependent backscatter coefficient of aggregating red blood cells reveals information about blood structural properties. The difficulty in applying this technique in vivo is due to the frequency-dependent attenuation caused by intervening tissue layers that distorts the spectral content of signals backscattered by blood. An optimization method is proposed to simultaneously estimate tissue attenuation and blood structure properties, and was termed the structure factor size and attenuation estimator (SFSAE). An ultrasound scanner equipped with a wide-band 25 MHz probe was used to insonify porcine blood sheared in both Couette and tubular flow devices. Since skin is one of the most attenuating tissue layers during in vivo scanning, four skin-mimicking phantoms with different attenuation coefficients were introduced between the transducer and the blood flow. The SFSAE gave estimates with relative errors below 25% for attenuations between 0.115 and 0.411 dBMHz and kR<2.08 (k being the wave number and R the aggregate radius). The SFSAE can be useful to examine in vivo and in situ abnormal blood conditions suspected to promote pathophysiological cardiovascular consequences.

摘要

聚集红细胞的超声频率相关背散射系数分析可揭示血液结构特性的信息。该技术在体内应用的困难在于,由于中间组织层引起的频率相关衰减会扭曲血液背散射信号的频谱内容。本文提出了一种优化方法,可同时估计组织衰减和血液结构特性,该方法被称为结构因子大小和衰减估计器(SFSAE)。实验采用配备宽带 25 MHz 探头的超声扫描仪,分别在 Couette 和管状流动装置中剪切猪血液。由于皮肤是体内扫描过程中衰减最大的组织层之一,因此在换能器和血流之间引入了四个具有不同衰减系数的皮肤模拟体模。SFSAE 对 0.115 至 0.411 dBMHz 之间的衰减和 kR<2.08(k 为波数,R 为聚集半径)的衰减给出了相对误差低于 25%的估计值。SFSAE 可用于检查体内和原位异常血液条件,这些条件可能会促进病理生理心血管后果。

相似文献

4
Experimental application of ultrafast imaging to spectral tissue characterization.
Ultrasound Med Biol. 2015 Sep;41(9):2506-19. doi: 10.1016/j.ultrasmedbio.2015.04.017. Epub 2015 Jun 26.
5
The effect of flow acceleration on the cyclic variation of blood echogenicity under pulsatile flow.
Ultrasound Med Biol. 2013 Apr;39(4):670-80. doi: 10.1016/j.ultrasmedbio.2012.10.018. Epub 2013 Feb 4.
6
Ultrasonic attenuation and backscatter from flowing whole blood are dependent on shear rate and hematocrit between 10 and 50 MHz.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Feb;58(2):357-68. doi: 10.1109/TUFFC.2011.1813.
7
Detecting spatial variations of erythrocytes by ultrasound backscattering statistical parameters under pulsatile flow.
IEEE Trans Biomed Eng. 2011 May;58(5):1163-71. doi: 10.1109/TBME.2010.2096537. Epub 2010 Dec 3.
8
A method for estimating an overlying layer correction in quantitative ultrasound imaging.
Ultrason Imaging. 1995 Oct;17(4):269-90. doi: 10.1177/016173469501700402.
10
High-frequency backscatter and attenuation measurements of porcine erythrocyte suspensions between 30-90 MHz.
Ultrasound Med Biol. 2002 Aug;28(8):1081-8. doi: 10.1016/s0301-5629(02)00525-2.

引用本文的文献

1
Quantitative ultrasound and photoacoustic assessments of red blood cell aggregation in the human radial artery.
Photoacoustics. 2025 Mar 13;43:100711. doi: 10.1016/j.pacs.2025.100711. eCollection 2025 Jun.
3
Monitoring Muscle Perfusion in Rodents During Short-Term Ischemia Using Power Doppler Ultrasound.
Ultrasound Med Biol. 2023 Jun;49(6):1465-1475. doi: 10.1016/j.ultrasmedbio.2023.02.013. Epub 2023 Mar 24.
5
Combining Spatial Registration With Clutter Filtering for Power-Doppler Imaging in Peripheral Perfusion Applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Dec;69(12):3243-3254. doi: 10.1109/TUFFC.2022.3211469. Epub 2022 Nov 24.
6
8
Low Variance Estimation of Backscatter Quantitative Ultrasound Parameters Using Dynamic Programming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Nov;65(11):2042-2053. doi: 10.1109/TUFFC.2018.2869810. Epub 2018 Sep 12.
9
Ultrasound scattering by aggregated red blood cells in patients with diabetes.
J Med Ultrason (2001). 2019 Jan;46(1):3-14. doi: 10.1007/s10396-018-0892-z. Epub 2018 Aug 30.

本文引用的文献

2
Relationship of ultrasonic spectral parameters to features of tissue microstructure.
IEEE Trans Ultrason Ferroelectr Freq Control. 1987;34(3):319-29. doi: 10.1109/t-uffc.1987.26950.
3
Cyclic changes in blood echogenicity under pulsatile flow are frequency dependent.
Ultrasound Med Biol. 2008 Apr;34(4):664-73. doi: 10.1016/j.ultrasmedbio.2007.10.002. Epub 2008 Jan 9.
5
Evaluation of the spectral fit algorithm as functions of frequency range and deltakaeff.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Nov;52(11):2003-10. doi: 10.1109/tuffc.2005.1561669.
7
Estimation of total attenuation and scatterer size from backscattered ultrasound waveforms.
J Acoust Soc Am. 2005 Mar;117(3 Pt 1):1431-9. doi: 10.1121/1.1858192.
9
High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat.
Ultrasound Med Biol. 2001 Nov;27(11):1543-56. doi: 10.1016/s0301-5629(01)00456-2.
10
Ultrasound backscatter and attenuation in human liver with diffuse disease.
Ultrasound Med Biol. 1999 Sep;25(7):1047-54. doi: 10.1016/s0301-5629(99)00055-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验