Suppr超能文献

入侵植物物种的综合生境制图。

Ensemble habitat mapping of invasive plant species.

机构信息

U.S. Geological Survey, Fort Collins Science Center, National Institute of Invasive Species Science, Fort Collins, CO, USA. tom

出版信息

Risk Anal. 2010 Feb;30(2):224-35. doi: 10.1111/j.1539-6924.2009.01343.x. Epub 2010 Feb 2.

Abstract

Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis.

摘要

集合物种分布模型结合了多个物种环境匹配模型的优势,同时最小化了任何一个模型的弱点。集合模型在分析最近入侵的有害物种的风险时可能特别有用,因为这些物种可能尚未传播到所有适宜的栖息地,使得物种与环境的关系难以确定。我们在怀俄明州的黄石公园和大提顿国家公园、加利福尼亚州的红杉和国王峡谷国家公园以及阿拉斯加内陆地区测试了五个单独的模型(逻辑回归、增强回归树、随机森林、多元自适应回归样条(MARS)和最大熵模型或 Maxent)以及选定的非本地植物物种的集合建模。这些模型基于公园工作人员提供的实地数据,结合了从卫星数据中得出的地形、气候和植被预测因子。对于测试的四种入侵植物物种,集合模型是唯一在实地验证和测试数据中排名前三种的模型。对于风险分析来说,集合模型可能比单个物种-环境匹配模型更稳健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验