Suppr超能文献

一种基于粗糙集的HIV-1逆转录酶耐药基因组模型。

A Rough Set-Based Model of HIV-1 Reverse Transcriptase Resistome.

作者信息

Kierczak Marcin, Ginalski Krzysztof, Dramiński Michał, Koronacki Jacek, Rudnicki Witold, Komorowski Jan

机构信息

The Linnaeus Centre for Bioinformatics, Uppsala University BMC, Box 598, Husargatan 3, SE-751 24 Uppsala, Sweden.

出版信息

Bioinform Biol Insights. 2009 Oct 5;3:109-27. doi: 10.4137/bbi.s3382.

Abstract

Reverse transcriptase (RT) is a viral enzyme crucial for HIV-1 replication. Currently, 12 drugs are targeted against the RT. The low fidelity of the RT-mediated transcription leads to the quick accumulation of drug-resistance mutations. The sequence-resistance relationship remains only partially understood. Using publicly available data collected from over 15 years of HIV proteome research, we have created a general and predictive rule-based model of HIV-1 resistance to eight RT inhibitors. Our rough set-based model considers changes in the physicochemical properties of a mutated sequence as compared to the wild-type strain. Thanks to the application of the Monte Carlo feature selection method, the model takes into account only the properties that significantly contribute to the resistance phenomenon. The obtained results show that drug-resistance is determined in more complex way than believed. We confirmed the importance of many resistance-associated sites, found some sites to be less relevant than formerly postulated and-more importantly-identified several previously neglected sites as potentially relevant. By mapping some of the newly discovered sites on the 3D structure of the RT, we were able to suggest possible molecular-mechanisms of drug-resistance. Importantly, our model has the ability to generalize predictions to the previously unseen cases. The study is an example of how computational biology methods can increase our understanding of the HIV-1 resistome.

摘要

逆转录酶(RT)是一种对HIV-1复制至关重要的病毒酶。目前,有12种药物靶向RT。RT介导转录的低保真性导致耐药突变迅速积累。序列与耐药性的关系仍仅部分为人所知。利用从超过15年的HIV蛋白质组研究中收集的公开数据,我们创建了一个基于规则的通用预测模型,用于预测HIV-1对八种RT抑制剂的耐药性。我们基于粗糙集的模型考虑了突变序列与野生型菌株相比物理化学性质的变化。由于应用了蒙特卡罗特征选择方法,该模型仅考虑对耐药现象有显著贡献的性质。所得结果表明,耐药性的确定方式比人们认为的更为复杂。我们证实了许多与耐药相关位点的重要性,发现一些位点的相关性不如先前假设的高,更重要的是,确定了几个先前被忽视但可能相关的位点。通过将一些新发现的位点映射到RT的三维结构上,我们能够提出可能的耐药分子机制。重要的是,我们的模型有能力将预测推广到以前未见过的病例。这项研究是计算生物学方法如何增进我们对HIV-1耐药组理解的一个例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/857e/2808174/218f38ea9b28/bbi-2009-109f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验