Suppr超能文献

结构和基于序列的分类器组合提高了贝伐单抗耐药性预测。

Improved Bevirimat resistance prediction by combination of structural and sequence-based classifiers.

机构信息

Department of Bioinformatics, Center of Medical Biotechnology, University of Duisburg-Essen, Universitaetsstr, 2, 45117 Essen, Germany.

出版信息

BioData Min. 2011 Nov 14;4:26. doi: 10.1186/1756-0381-4-26.

Abstract

BACKGROUND

Maturation inhibitors such as Bevirimat are a new class of antiretroviral drugs that hamper the cleavage of HIV-1 proteins into their functional active forms. They bind to these preproteins and inhibit their cleavage by the HIV-1 protease, resulting in non-functional virus particles. Nevertheless, there exist mutations in this region leading to resistance against Bevirimat. Highly specific and accurate tools to predict resistance to maturation inhibitors can help to identify patients, who might benefit from the usage of these new drugs.

RESULTS

We tested several methods to improve Bevirimat resistance prediction in HIV-1. It turned out that combining structural and sequence-based information in classifier ensembles led to accurate and reliable predictions. Moreover, we were able to identify the most crucial regions for Bevirimat resistance computationally, which are in line with experimental results from other studies.

CONCLUSIONS

Our analysis demonstrated the use of machine learning techniques to predict HIV-1 resistance against maturation inhibitors such as Bevirimat. New maturation inhibitors are already under development and might enlarge the arsenal of antiretroviral drugs in the future. Thus, accurate prediction tools are very useful to enable a personalized therapy.

摘要

背景

成熟抑制剂,如贝维利姆,是一类新型抗逆转录病毒药物,可阻碍 HIV-1 蛋白切割成具有功能的活性形式。它们与这些前体蛋白结合,并抑制 HIV-1 蛋白酶对其的切割,导致无功能的病毒颗粒。然而,该区域存在导致对贝维利姆产生耐药性的突变。高度特异和准确的工具来预测对成熟抑制剂的耐药性有助于识别可能受益于这些新药的患者。

结果

我们测试了几种方法来改进 HIV-1 中贝维利姆耐药性的预测。事实证明,将结构和基于序列的信息组合在分类器集合中可导致准确和可靠的预测。此外,我们能够在计算上确定对贝维利姆耐药性至关重要的区域,这与其他研究的实验结果一致。

结论

我们的分析证明了机器学习技术在预测 HIV-1 对成熟抑制剂(如贝维利姆)的耐药性方面的应用。新的成熟抑制剂正在开发中,将来可能会扩大抗逆转录病毒药物的武器库。因此,准确的预测工具对于实现个体化治疗非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8707/3248369/65882c0ccce3/1756-0381-4-26-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验