Suppr超能文献

人类和非人类灵长类动物基因组共享正选择的热点。

Human and non-human primate genomes share hotspots of positive selection.

机构信息

DYOGEN Lab, CNRS UMR8541, Ecole Normale Supérieure, Paris, France.

出版信息

PLoS Genet. 2010 Feb 5;6(2):e1000840. doi: 10.1371/journal.pgen.1000840.

Abstract

Among primates, genome-wide analysis of recent positive selection is currently limited to the human species because it requires extensive sampling of genotypic data from many individuals. The extent to which genes positively selected in human also present adaptive changes in other primates therefore remains unknown. This question is important because a gene that has been positively selected independently in the human and in other primate lineages may be less likely to be involved in human specific phenotypic changes such as dietary habits or cognitive abilities. To answer this question, we analysed heterozygous Single Nucleotide Polymorphisms (SNPs) in the genomes of single human, chimpanzee, orangutan, and macaque individuals using a new method aiming to identify selective sweeps genome-wide. We found an unexpectedly high number of orthologous genes exhibiting signatures of a selective sweep simultaneously in several primate species, suggesting the presence of hotspots of positive selection. A similar significant excess is evident when comparing genes positively selected during recent human evolution with genes subjected to positive selection in their coding sequence in other primate lineages and identified using a different test. These findings are further supported by comparing several published human genome scans for positive selection with our findings in non-human primate genomes. We thus provide extensive evidence that the co-occurrence of positive selection in humans and in other primates at the same genetic loci can be measured with only four species, an indication that it may be a widespread phenomenon. The identification of positive selection in humans alongside other primates is a powerful tool to outline those genes that were selected uniquely during recent human evolution.

摘要

在灵长类动物中,由于需要从许多个体中广泛采集基因型数据,目前全基因组范围内的正选择分析仅限于人类物种。因此,人类中被正选择的基因在其他灵长类动物中是否存在适应性变化尚不清楚。这个问题很重要,因为在人类和其他灵长类动物谱系中独立被正选择的基因,不太可能参与人类特有的表型变化,如饮食习惯或认知能力。为了回答这个问题,我们使用一种新的方法,分析了单个人类、黑猩猩、猩猩和猕猴个体基因组中的杂合单核苷酸多态性(SNP),旨在全基因组范围内识别选择清除。我们发现,令人惊讶的是,许多直系同源基因同时在几种灵长类动物中表现出选择清除的特征,这表明存在正选择的热点。当比较在人类进化过程中被正选择的基因与在其他灵长类动物谱系的编码序列中被正选择并使用不同测试识别的基因时,也会出现类似的显著过剩。通过将几种已发表的人类基因组正选择扫描与我们在非人类灵长类动物基因组中的发现进行比较,进一步支持了这些发现。因此,我们提供了广泛的证据表明,在人类和其他灵长类动物中,在相同的遗传位点上同时发生正选择是可以测量的,只需要四个物种,这表明这可能是一个普遍现象。在人类和其他灵长类动物中同时识别正选择是一个有力的工具,可以勾勒出那些在最近的人类进化中被选择的独特基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e817/2816677/1d0ce3914a77/pgen.1000840.g001.jpg

相似文献

1
Human and non-human primate genomes share hotspots of positive selection.
PLoS Genet. 2010 Feb 5;6(2):e1000840. doi: 10.1371/journal.pgen.1000840.
2
Selective Sweeps across Twenty Millions Years of Primate Evolution.
Mol Biol Evol. 2016 Dec;33(12):3065-3074. doi: 10.1093/molbev/msw199. Epub 2016 Sep 22.
3
Detecting positive selection within genomes: the problem of biased gene conversion.
Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2571-80. doi: 10.1098/rstb.2010.0007.
4
Evolutionary trajectories of primate genes involved in HIV pathogenesis.
Mol Biol Evol. 2009 Dec;26(12):2865-75. doi: 10.1093/molbev/msp197. Epub 2009 Sep 2.
5
Evolution of coding microsatellites in primate genomes.
Genome Biol Evol. 2013;5(2):283-95. doi: 10.1093/gbe/evt003.
6
A genome-wide screen for noncoding elements important in primate evolution.
BMC Evol Biol. 2008 Jan 23;8:17. doi: 10.1186/1471-2148-8-17.
7
Characterization of the primate TRIM gene family reveals the recent evolution in primates.
Mol Genet Genomics. 2020 Sep;295(5):1281-1294. doi: 10.1007/s00438-020-01698-2. Epub 2020 Jun 20.
8
The role of mRNA-based duplication in the evolution of the primate genome.
FEBS Lett. 2013 Nov 1;587(21):3500-7. doi: 10.1016/j.febslet.2013.08.042. Epub 2013 Sep 10.
9
[Hotspots of positive selection in primate genomes].
Med Sci (Paris). 2010 Jun-Jul;26(6-7):579-81. doi: 10.1051/medsci/2010266-7579.

引用本文的文献

3
Genetic polymorphisms of toll-like receptors in leprosy patients from southern Brazil.
Front Genet. 2022 Oct 12;13:952219. doi: 10.3389/fgene.2022.952219. eCollection 2022.
4
Population-Average Brain Templates and Application to Automated Voxel-Wise Analysis Pipelines for Cynomolgus Macaque.
Neuroinformatics. 2022 Jul;20(3):613-626. doi: 10.1007/s12021-021-09545-4. Epub 2021 Sep 14.
5
Evolutionary History of the Toll-Like Receptor Gene Family across Vertebrates.
Genome Biol Evol. 2020 Jan 1;12(1):3615-3634. doi: 10.1093/gbe/evz266.
6
Conservation of cell-intrinsic immune responses in diverse nonhuman primate species.
Life Sci Alliance. 2019 Oct 24;2(5). doi: 10.26508/lsa.201900495. Print 2019 Oct.
7
Improving immunological insights into the ferret model of human viral infectious disease.
Influenza Other Respir Viruses. 2019 Nov;13(6):535-546. doi: 10.1111/irv.12687. Epub 2019 Oct 3.
8
An Evolutionary Perspective on the Impact of Genomic Copy Number Variation on Human Health.
J Mol Evol. 2020 Jan;88(1):104-119. doi: 10.1007/s00239-019-09911-6. Epub 2019 Sep 14.
9
RNA-seq coupled to proteomic analysis reveals high sperm proteome variation between two closely related marine mussel species.
J Proteomics. 2019 Feb 10;192:169-187. doi: 10.1016/j.jprot.2018.08.020. Epub 2018 Sep 4.
10
A Gene-Oriented Haplotype Comparison Reveals Recently Selected Genomic Regions in Temperate and Tropical Maize Germplasm.
PLoS One. 2017 Jan 18;12(1):e0169806. doi: 10.1371/journal.pone.0169806. eCollection 2017.

本文引用的文献

1
Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense.
PLoS Genet. 2009 Jul;5(7):e1000562. doi: 10.1371/journal.pgen.1000562. Epub 2009 Jul 17.
2
Sperm protein 17 is expressed in the sperm fibrous sheath.
J Transl Med. 2009 Jul 15;7:61. doi: 10.1186/1479-5876-7-61.
3
The difficulty of avoiding false positives in genome scans for natural selection.
Genome Res. 2009 May;19(5):922-33. doi: 10.1101/gr.086512.108.
4
Constructing genomic maps of positive selection in humans: where do we go from here?
Genome Res. 2009 May;19(5):711-22. doi: 10.1101/gr.086652.108.
5
Signals of recent positive selection in a worldwide sample of human populations.
Genome Res. 2009 May;19(5):826-37. doi: 10.1101/gr.087577.108. Epub 2009 Mar 23.
6
Pervasive hitchhiking at coding and regulatory sites in humans.
PLoS Genet. 2009 Jan;5(1):e1000336. doi: 10.1371/journal.pgen.1000336. Epub 2009 Jan 16.
7
An investigation of the statistical power of neutrality tests based on comparative and population genetic data.
Mol Biol Evol. 2009 Feb;26(2):273-83. doi: 10.1093/molbev/msn231. Epub 2008 Oct 14.
8
Fregene: simulation of realistic sequence-level data in populations and ascertained samples.
BMC Bioinformatics. 2008 Sep 8;9:364. doi: 10.1186/1471-2105-9-364.
9
Patterns of positive selection in six Mammalian genomes.
PLoS Genet. 2008 Aug 1;4(8):e1000144. doi: 10.1371/journal.pgen.1000144.
10
Confounding between recombination and selection, and the Ped/Pop method for detecting selection.
Genome Res. 2008 Aug;18(8):1304-13. doi: 10.1101/gr.067181.107. Epub 2008 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验