Université Montpellier II, Laboratoire de Chimie Biomoléculaire, UMR 5032, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex, France.
Expert Opin Ther Pat. 2006 Jan;16(1):27-47. doi: 10.1517/13543776.16.1.27.
The sulfamide moiety, similarly to the structurally related sulfonamide and sulfamate ones, is widely employed in medicinal chemistry for the design of biologically active compounds. Amongst the enzymes for which sulfamide-based inhibitors were designed are the carbonic anhydrases (CAs), and a large number of proteases belonging to the aspartic protease (HIV-1 protease, gamma-secretase), serine protease (elastase, chymase, tryptase and thrombin, among others) and metalloproteinase (carboxypeptidase A [CPA] and matrix metalloproteinase [MMP]) families. Some steroid sulfatase (STS) and protein tyrosine phosphatase inhibitors belonging to the sulfamide class of derivatives have also been reported. In all these compounds, many of which show low nanomolar affinity for the target enzymes for which they have been designed, the free or substituted sulfamide moiety plays an important role in the binding of the inhibitor to the active site cavity. This is achieved either by directly coordinating to the metal ion found in some metalloenzymes (CAs, CPA, STS), usually by means of one of the nitrogen atoms present in the sulfamide motif, or, as in the case of the cyclic sulfamides, acting as HIV protease inhibitors interacting with the catalytically critical aspartic acid residues of the active site by means of an oxygen atom belonging to the HN-SO(2)-NH motif that substitutes a catalytically essential water molecule. In other cases, the sulfamide moiety is important for inducing desired physicochemical properties to the drug-like compounds incorporating it, such as enhanced water solubility, better bioavailability etc., due to the intrinsic properties of this highly polarised moiety when attached to an organic scaffold. This interesting motif is, thus, of great value for the design of pharmacological agents with many applications.
磺胺部分,与结构相关的磺胺和磺胺酸盐部分类似,广泛应用于药物化学设计生物活性化合物。为其设计磺胺基抑制剂的酶包括碳酸酐酶(CA),以及大量属于天冬氨酸蛋白酶(HIV-1 蛋白酶、γ-分泌酶)、丝氨酸蛋白酶(弹性蛋白酶、糜蛋白酶、胰蛋白酶和凝血酶等)和金属蛋白酶(羧肽酶 A [CPA]和基质金属蛋白酶 [MMP])家族的蛋白酶。也有一些甾体硫酸酯酶(STS)和属于磺胺类衍生物的蛋白酪氨酸磷酸酶抑制剂。在所有这些化合物中,许多磺胺类化合物对其设计的靶酶具有低纳摩尔亲和力,游离或取代的磺胺部分在抑制剂与活性位点腔的结合中起着重要作用。这是通过直接与某些金属酶(CA、CPA、STS)中的金属离子配位来实现的,通常通过磺胺基序中存在的一个氮原子来实现,或者,在环状磺胺的情况下,通过与活性位点的催化关键天冬氨酸残基相互作用作为 HIV 蛋白酶抑制剂来实现,通过属于 HN-SO(2)-NH 基序的氧原子替代催化必需的水分子。在其他情况下,磺胺部分对于将其纳入的类似药物的诱导所需的物理化学性质很重要,例如增强的水溶性、更好的生物利用度等,这是由于附着在有机支架上的这种高度极化部分的固有特性。因此,这个有趣的基序对于设计具有许多应用的药理学试剂具有重要价值。