Rye H S, Quesada M A, Peck K, Mathies R A, Glazer A N
Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720.
Nucleic Acids Res. 1991 Jan 25;19(2):327-33. doi: 10.1093/nar/19.2.327.
Ethidium homodimer (EthD; lambda Fmax 620 nm) at EthD:DNA ratios up to 1 dye:4-5 bp forms stable fluorescent complexes with double-stranded DNA (dsDNA) which can be detected with high sensitivity using a confocal fluorescence gel scanner (Glazer, A.N., Peck, K. & Mathies, R.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3851-3855). However, on incubation with unlabeled DNA partial migration of EthD takes place from its complex with dsDNA to the unlabeled DNA. It is shown here that this migration is dependent on the fractional occupancy of intercalating sites in the original dsDNA-EthD complex and that there is no detectable transfer from dsDNA-EthD complexes formed at 50 bp: 1 dye. The monointercalator thiazole orange (TO; lambda Fmax 530 nm) forms readily dissociable complexes with dsDNA with a large fluorescence enhancement on binding (Lee, L.G., Chen, C. & Liu, L.A. (1986) Cytometry 7, 508-517). However, a large molar excess of TO does not displace EthD from its complex with dsDNA. When TO and EthD are bound to the same dsDNA molecule, excitation of TO leads to efficient energy transfer from TO to EthD. This observation shows the practicability of 'sensitizing' EthD fluorescence with a second intercalating dye having a very high absorption coefficient and efficient energy transfer characteristics. Electrophoresis on agarose gels, with TO in the buffer, of preformed linearized M13mp18 DNA-EthD complex together with unlabeled linearized pBR322 permits sensitive fluorescence detection in the same lane of pBR322 DNA-TO complex at 530 nm and of M13mp18 DNA-EthD complex at 620 nm. These observations lay the groundwork for the use of stable DNA-dye intercalation complexes carrying hundreds of chromophores in two-color applications such as the physical mapping of chromosomes.
溴化乙锭同二聚体(EthD;最大发射波长λFmax为620 nm)在EthD与DNA比例高达1染料分子:4 - 5碱基对时,能与双链DNA(dsDNA)形成稳定的荧光复合物,使用共聚焦荧光凝胶扫描仪可高灵敏度检测到这种复合物(格拉泽,A.N.,佩克,K.和马西斯,R.A.(1990年)《美国国家科学院院刊》87,3851 - 3855)。然而,与未标记的DNA一起温育时,EthD会从其与dsDNA的复合物部分迁移到未标记的DNA上。本文表明,这种迁移取决于原始dsDNA - EthD复合物中嵌入位点的占有率,并且在50碱基对:1染料分子形成的dsDNA - EthD复合物中未检测到转移。单嵌入剂噻唑橙(TO;最大发射波长λFmax为530 nm)与dsDNA形成易于解离的复合物,结合时荧光大幅增强(李,L.G.,陈,C.和刘,L.A.(1986年)《细胞分析》7,508 - 517)。然而,大量摩尔过量的TO不会将EthD从其与dsDNA的复合物中取代。当TO和EthD结合到同一个dsDNA分子上时,TO的激发会导致从TO到EthD的有效能量转移。这一观察结果表明,用具有非常高吸收系数和有效能量转移特性的第二种嵌入染料“敏化”EthD荧光是可行的。在缓冲液中含有TO的琼脂糖凝胶上,对预先形成的线性化M13mp18 DNA - EthD复合物与未标记的线性化pBR322进行电泳,可以在同一泳道中灵敏地检测到530 nm处的pBR322 DNA - TO复合物和620 nm处的M13mp18 DNA - EthD复合物的荧光。这些观察结果为在双色应用(如染色体物理图谱绘制)中使用携带数百个发色团的稳定DNA - 染料嵌入复合物奠定了基础。