School of Industrial Engineering, University of Oklahoma, Norman, OK 73019, USA.
J Mech Behav Biomed Mater. 2010 Apr;3(3):249-59. doi: 10.1016/j.jmbbm.2009.10.006. Epub 2009 Oct 22.
Patient specific porous implants for the reconstruction of craniofacial defects have gained importance due to their better performance over their generic counterparts. The recent introduction of electron beam melting (EBM) for the processing of titanium has led to a one step fabrication of porous custom titanium implants with controlled porosity to meet the requirements of the anatomy and functions at the region of implantation. This paper discusses an image based micro-structural analysis and the mechanical characterization of porous Ti6Al4V structures fabricated using the EBM rapid manufacturing process. SEM studies have indicated the complete melting of the powder material with no evidence of poor inter-layer bonding. Micro-CT scan analysis of the samples indicate well formed titanium struts and fully interconnected pores with porosities varying from 49.75%-70.32%. Compression tests of the samples showed effective stiffness values ranging from 0.57(+/-0.05)-2.92(+/-0.17)GPa and compressive strength values of 7.28(+/-0.93)-163.02(+/-11.98)MPa. For nearly the same porosity values of 49.75% and 50.75%, with a variation in only the strut thickness in the sample sets, the compressive stiffness and strength decreased significantly from 2.92 GPa to 0.57 GPa (80.5% reduction) and 163.02 MPa to 7.28 MPa (93.54 % reduction) respectively. The grain density of the fabricated Ti6Al4V structures was found to be 4.423 g/cm(3) equivalent to that of dense Ti6Al4V parts fabricated using conventional methods. In conclusion, from a mechanical strength viewpoint, we have found that the porous structures produced by the electron beam melting process present a promising rapid manufacturing process for the direct fabrication of customized titanium implants for enabling personalized medicine.
由于其在性能方面优于通用型产品,因此针对颅面缺损重建的个性化多孔植入物已变得越来越重要。最近,电子束熔化(EBM)技术的引入已经实现了一步法制造多孔定制钛植入物,这些植入物具有可控的孔隙率,可以满足植入部位解剖结构和功能的要求。本文讨论了基于图像的微观结构分析和使用 EBM 快速制造工艺制造的多孔 Ti6Al4V 结构的机械特性。SEM 研究表明,粉末材料完全熔化,没有证据表明层间结合不良。对样品的微 CT 扫描分析表明,钛支柱结构良好,完全连通的孔隙率为 49.75%-70.32%。样品的压缩测试表明,有效刚度值范围为 0.57(+/-0.05)-2.92(+/-0.17)GPa,抗压强度值为 7.28(+/-0.93)-163.02(+/-11.98)MPa。对于几乎相同的 49.75%和 50.75%孔隙率值,仅在样品组中改变支柱厚度,压缩刚度和强度从 2.92 GPa 显著降低至 0.57 GPa(降低 80.5%),从 163.02 MPa 降低至 7.28 MPa(降低 93.54%)。发现制造的 Ti6Al4V 结构的晶粒密度为 4.423 g/cm(3),相当于使用传统方法制造的致密 Ti6Al4V 零件。总之,从机械强度的角度来看,我们发现电子束熔化工艺生产的多孔结构为直接制造定制钛植入物提供了一种有前途的快速制造工艺,从而实现了个性化医疗。