The Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
Dis Model Mech. 2010 Mar-Apr;3(3-4):209-23. doi: 10.1242/dmm.004135. Epub 2010 Feb 8.
Most forms of hearing loss are associated with loss of cochlear outer hair cells (OHCs). OHCs require the tectorial membrane (TM) for stereociliary bundle stimulation (forward transduction) and active feedback (reverse transduction). Alpha tectorin is a protein constituent of the TM and the C1509G mutation in alpha tectorin in humans results in autosomal dominant hearing loss. We engineered and validated this mutation in mice and found that the TM was shortened in heterozygous Tecta(C1509G/+) mice, reaching only the first row of OHCs. Thus, deficient forward transduction renders OHCs within the second and third rows non-functional, producing partial hearing loss. Surprisingly, both Tecta(C1509G/+) and Tecta(C1509G/C1509G) mice were found to have increased reverse transduction as assessed by sound- and electrically-evoked otoacoustic emissions. We show that an increase in prestin, a protein necessary for electromotility, in all three rows of OHCs underlies this phenomenon. This mouse model demonstrates a human hearing loss mutation in which OHC function is altered through a non-cell-autonomous variation in prestin.
大多数形式的听力损失都与耳蜗外毛细胞 (OHC) 的损失有关。OHC 需要有盖膜 (TM) 来刺激纤毛束(正向转导)和进行主动反馈(反向转导)。α-连接蛋白是 TM 的一种蛋白成分,人类α-连接蛋白中的 C1509G 突变导致常染色体显性遗传性听力损失。我们在小鼠中设计并验证了这种突变,发现杂合子 Tecta(C1509G/+) 小鼠的 TM 缩短,仅到达 OHC 的第一排。因此,正向转导的缺陷使第二排和第三排的 OHC 失去功能,导致部分听力损失。令人惊讶的是,我们发现 Tecta(C1509G/+) 和 Tecta(C1509G/C1509G) 小鼠的反向转导都增加了,这可以通过声诱发和电诱发耳声发射来评估。我们表明,所有三排 OHC 中,与运动有关的蛋白 prestin 的增加是这种现象的基础。这个小鼠模型证明了一种人类听力损失突变,其中 OHC 功能通过 prestin 的非细胞自主变化而改变。