Suppr超能文献

α-肌球蛋白重链 1509C>G 突变导致人耳聋的前转导缺陷和反式转导增强。

Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation.

机构信息

The Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Dis Model Mech. 2010 Mar-Apr;3(3-4):209-23. doi: 10.1242/dmm.004135. Epub 2010 Feb 8.

Abstract

Most forms of hearing loss are associated with loss of cochlear outer hair cells (OHCs). OHCs require the tectorial membrane (TM) for stereociliary bundle stimulation (forward transduction) and active feedback (reverse transduction). Alpha tectorin is a protein constituent of the TM and the C1509G mutation in alpha tectorin in humans results in autosomal dominant hearing loss. We engineered and validated this mutation in mice and found that the TM was shortened in heterozygous Tecta(C1509G/+) mice, reaching only the first row of OHCs. Thus, deficient forward transduction renders OHCs within the second and third rows non-functional, producing partial hearing loss. Surprisingly, both Tecta(C1509G/+) and Tecta(C1509G/C1509G) mice were found to have increased reverse transduction as assessed by sound- and electrically-evoked otoacoustic emissions. We show that an increase in prestin, a protein necessary for electromotility, in all three rows of OHCs underlies this phenomenon. This mouse model demonstrates a human hearing loss mutation in which OHC function is altered through a non-cell-autonomous variation in prestin.

摘要

大多数形式的听力损失都与耳蜗外毛细胞 (OHC) 的损失有关。OHC 需要有盖膜 (TM) 来刺激纤毛束(正向转导)和进行主动反馈(反向转导)。α-连接蛋白是 TM 的一种蛋白成分,人类α-连接蛋白中的 C1509G 突变导致常染色体显性遗传性听力损失。我们在小鼠中设计并验证了这种突变,发现杂合子 Tecta(C1509G/+) 小鼠的 TM 缩短,仅到达 OHC 的第一排。因此,正向转导的缺陷使第二排和第三排的 OHC 失去功能,导致部分听力损失。令人惊讶的是,我们发现 Tecta(C1509G/+) 和 Tecta(C1509G/C1509G) 小鼠的反向转导都增加了,这可以通过声诱发和电诱发耳声发射来评估。我们表明,所有三排 OHC 中,与运动有关的蛋白 prestin 的增加是这种现象的基础。这个小鼠模型证明了一种人类听力损失突变,其中 OHC 功能通过 prestin 的非细胞自主变化而改变。

相似文献

1
Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation.
Dis Model Mech. 2010 Mar-Apr;3(3-4):209-23. doi: 10.1242/dmm.004135. Epub 2010 Feb 8.
2
Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane.
J Assoc Res Otolaryngol. 2011 Oct;12(5):577-94. doi: 10.1007/s10162-011-0269-0. Epub 2011 May 13.
3
Activity-dependent regulation of prestin expression in mouse outer hair cells.
J Neurophysiol. 2015 Jun 1;113(10):3531-42. doi: 10.1152/jn.00869.2014. Epub 2015 Mar 25.
4
Structural and mechanical analysis of tectorial membrane Tecta mutants.
Biophys J. 2011 May 18;100(10):2530-8. doi: 10.1016/j.bpj.2011.04.024.
6
Prestin regulation and function in residual outer hair cells after noise-induced hearing loss.
PLoS One. 2013 Dec 20;8(12):e82602. doi: 10.1371/journal.pone.0082602. eCollection 2013.
7
Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane.
Nat Neurosci. 2007 Feb;10(2):215-23. doi: 10.1038/nn1828. Epub 2007 Jan 14.
10
A deafness mutation isolates a second role for the tectorial membrane in hearing.
Nat Neurosci. 2005 Aug;8(8):1035-42. doi: 10.1038/nn1496. Epub 2005 Jul 3.

引用本文的文献

2
Infrared light stimulates the cochlea through a mechanical displacement detected and amplified by hair cells.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2422076122. doi: 10.1073/pnas.2422076122. Epub 2025 Apr 24.
6
Chemokine Receptor CCR2 Is Protective toward Outer Hair Cells in Chronic Suppurative Otitis Media.
Immunohorizons. 2024 Sep 1;8(9):688-694. doi: 10.4049/immunohorizons.2400064.
8
The impact of targeted ablation of one row of outer hair cells and Deiters' cells on cochlear amplification.
J Neurophysiol. 2022 Nov 1;128(5):1365-1373. doi: 10.1152/jn.00501.2021. Epub 2022 Oct 19.
9
PRDM16 expression and function in mammalian cochlear development.
Dev Dyn. 2022 Oct;251(10):1666-1683. doi: 10.1002/dvdy.480. Epub 2022 May 7.
10
Unloading outer hair cell bundles in vivo does not yield evidence of spontaneous oscillations in the mouse cochlea.
Hear Res. 2022 Sep 15;423:108473. doi: 10.1016/j.heares.2022.108473. Epub 2022 Mar 1.

本文引用的文献

2
Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging.
Nat Neurosci. 2009 May;12(5):553-8. doi: 10.1038/nn.2295. Epub 2009 Mar 29.
3
Deafness in TRbeta mutants is caused by malformation of the tectorial membrane.
J Neurosci. 2009 Feb 25;29(8):2581-7. doi: 10.1523/JNEUROSCI.3557-08.2009.
4
Hearing loss in children with very low birth weight: current review of epidemiology and pathophysiology.
Arch Dis Child Fetal Neonatal Ed. 2008 Nov;93(6):F462-8. doi: 10.1136/adc.2007.124214.
5
Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea.
J Assoc Res Otolaryngol. 2008 Dec;9(4):477-89. doi: 10.1007/s10162-008-0135-x. Epub 2008 Aug 8.
7
Functional prestin transduction of immature outer hair cells from normal and prestin-null mice.
J Assoc Res Otolaryngol. 2008 Sep;9(3):307-20. doi: 10.1007/s10162-008-0121-3. Epub 2008 May 28.
8
Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification.
Neuron. 2008 May 8;58(3):333-9. doi: 10.1016/j.neuron.2008.02.028.
9
Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity.
Nat Neurosci. 2008 Jun;11(6):713-20. doi: 10.1038/nn.2116. Epub 2008 Apr 27.
10
The role of prestin in the generation of electrically evoked otoacoustic emissions in mice.
J Neurophysiol. 2008 Apr;99(4):1607-15. doi: 10.1152/jn.01216.2007. Epub 2008 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验