Suppr超能文献

在大规模并行处理器上结合古德粗糙度先验的发射断层扫描贝叶斯图像重建。

Bayesian image reconstruction for emission tomography incorporating Good's roughness prior on massively parallel processors.

作者信息

Miller M I, Roysam B

机构信息

Department of Electrical Engineering, Washington University, St. Louis, MO 63130.

出版信息

Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3223-7. doi: 10.1073/pnas.88.8.3223.

Abstract

Since the introduction by Shepp and Vardi [Shepp, L. A. & Vardi, Y. (1982) IEEE Trans. Med. Imaging 1, 113-121] of the expectation-maximization algorithm for the generation of maximum-likelihood images in emission tomography, a number of investigators have applied the maximum-likelihood method to imaging problems. Though this approach is promising, it is now well known that the unconstrained maximum-likelihood approach has two major drawbacks: (i) the algorithm is computationally demanding, resulting in reconstruction times that are not acceptable for routine clinical application, and (ii) the unconstrained maximum-likelihood estimator has a fundamental noise artifact that worsens as the iterative algorithm climbs the likelihood hill. In this paper the computation issue is addressed by proposing an implementation on the class of massively parallel single-instruction, multiple-data architectures. By restructuring the superposition integrals required for the expectation-maximization algorithm as the solutions of partial differential equations, the local data passage required for efficient computation on this class of machines is satisfied. For dealing with the "noise artifact" a Markov random field prior determined by Good's rotationally invariant roughness penalty is incorporated. These methods are demonstrated on the single-instruction multiple-data class of parallel processors, with the computation times compared with those on conventional and hypercube architectures.

摘要

自从谢泼德(Shepp)和瓦尔迪(Vardi)[谢泼德,L. A. & 瓦尔迪,Y.(1982年)《IEEE医学成像汇刊》1,113 - 121]引入期望最大化算法用于发射断层扫描中生成最大似然图像以来,许多研究人员已将最大似然方法应用于成像问题。尽管这种方法很有前景,但现在众所周知,无约束最大似然方法有两个主要缺点:(i)该算法计算量很大,导致重建时间对于常规临床应用来说不可接受,以及(ii)无约束最大似然估计器有一个基本的噪声伪影,随着迭代算法向似然峰攀升,该伪影会恶化。在本文中,通过在大规模并行单指令多数据架构类上提出一种实现方法来解决计算问题。通过将期望最大化算法所需的叠加积分重新构造为偏微分方程的解,满足了在这类机器上进行高效计算所需的局部数据传输。为了处理“噪声伪影”,引入了由古德(Good)的旋转不变粗糙度惩罚确定的马尔可夫随机场先验。这些方法在单指令多数据类并行处理器上得到了验证,并将计算时间与传统架构和超立方体架构上的计算时间进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10a7/51418/9db1c547306e/pnas01058-0267-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验