Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, USA.
BMC Med Genomics. 2010 Feb 9;3:4. doi: 10.1186/1755-8794-3-4.
Abberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine) induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes.
It is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing.
We show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes.
Clinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier to predict gene up-regulation based on promoter methylation and CpG content, which achieves a performance of 0.77 AUC.
CpG 二核苷酸处的异常 DNA 甲基化代表了癌症中转录沉默的常见机制。由于 CpG 甲基化是一种可逆转的事件,因此通过这种机制沉默的肿瘤抑制基因代表了用于表观遗传活性抗癌治疗的有前途的靶标。胞嘧啶类似物 5-氮杂-2'-脱氧胞苷(地西他滨)通过抑制 DNA 甲基转移酶诱导基因组低甲基化,是一种被认为通过上调沉默基因起作用的表观遗传药物的例子。
尚不清楚地西他滨为何导致一些沉默基因重新表达,而其他基因仍处于非活性状态。通过将数据挖掘技术应用于大规模数据集,我们试图阐明定义对药物作用敏感的启动子区域的特性。我们的实验数据来自黑素瘤细胞系,包括地西他滨治疗前后的全基因组基因表达数据,以及未经处理的启动子甲基化状态的全基因组数据,以及通过亚硫酸氢盐测序验证的特定基因。
我们表明,启动子 CpG 含量和甲基化水平的组合提供了地西他滨治疗上调基因表达的能力。高甲基化水平和中等 CpG 含量的启动子似乎最容易受到地西他滨的上调,而那些高甲基化且 CpG 含量高的启动子很少被上调。对于低甲基化水平的启动子,高 CpG 含量的启动子更有可能被上调,而低 CpG 含量的启动子在被上调的基因中代表性较低。
临床上,阐明地西他滨的作用模式可以帮助预测上调表观遗传沉默的肿瘤抑制基因和其他与肿瘤生物学相关途径的基因的可能性。作为向最终转化应用的第一步,我们构建了一个基于启动子甲基化和 CpG 含量预测基因上调的分类器,其性能为 0.77 AUC。