Bennun Alfred
The State University of New Jersey, United States.
Biosystems. 2010 May;100(2):87-93. doi: 10.1016/j.biosystems.2010.02.001. Epub 2010 Feb 6.
Incubation with noradrenaline (norepinephrine) of isolated membranes of rat's brain corpus striatum and cortex, showed that ionic-magnesium (Mg(2+)) is required for the neurotransmitter activatory response of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing) (EC 4.6.1.1)], AC. An Mg(2+)-dependent response to the activatory effects of adrenaline, and subsequent inhibition by calcium, suggest capability for a turnover, associated with cyclic changes in membrane potential and participation in a short-term memory pathway. In the cell, the neurotransmitter by activating AC generates intracellular cyclic AMP. Calcium entrance in the cell inhibits the enzyme. The increment of cyclic AMP activates kinase A and their protein phosphorylating activity, allowing a long-term memory pathway. Hence, consolidating neuronal circuits, related to emotional learning and memory affirmation. The activatory effect relates to an enzyme-noradrenaline complex which may participate in the physiology of the fight or flight response, by prolonged exposure. However, the persistence of an unstable enzyme complex turns the enzyme inactive. Effect concordant, with the observation that prolonged exposure to adrenaline, participates in the etiology of stress triggered pathologies. At the cell physiological level AC responsiveness to hormones could be modulated by the concentration of chelating metabolites. These ones produce the release of free ATP(4-), a negative modulator of AC and the Mg(2+) activated insulin receptor tyrosine kinase (IRTK), thus, allowing an integration of the hormonal response of both enzymes by ionic controls. This effect could supersede the metabolic feedback control by energy charge. Accordingly, maximum hormonal response of both enzymes, to high Mg(2+) and low free ATP(4-), allows a correlation with the known effects of low caloric intake increasing average life expectancy.
用去甲肾上腺素(norepinephrine)孵育大鼠脑纹状体和皮质的分离膜,结果表明,腺苷酸环化酶[ATP焦磷酸裂解酶(环化)(EC 4.6.1.1)],即AC的神经递质激活反应需要离子镁(Mg(2+))。对肾上腺素激活作用的Mg(2+)依赖性反应以及随后被钙抑制,表明其具有周转能力,与膜电位的周期性变化相关,并参与短期记忆途径。在细胞中,神经递质通过激活AC产生细胞内的环磷酸腺苷(cAMP)。钙进入细胞会抑制该酶。cAMP的增加会激活蛋白激酶A及其蛋白磷酸化活性,从而形成长期记忆途径。因此,巩固了与情绪学习和记忆确认相关的神经回路。这种激活作用与一种酶 - 去甲肾上腺素复合物有关,该复合物可能通过长时间暴露参与战斗或逃跑反应的生理过程。然而,不稳定的酶复合物的持续存在会使酶失活。这一效应与以下观察结果一致,即长时间暴露于肾上腺素会参与应激引发的病理过程的病因。在细胞生理水平上,AC对激素的反应性可能受到螯合代谢物浓度的调节。这些螯合代谢物会释放游离的ATP(4-),它是AC和Mg(2+)激活的胰岛素受体酪氨酸激酶(IRTK)的负调节剂,因此,通过离子控制实现了两种酶激素反应的整合。这种效应可能会取代能量电荷的代谢反馈控制。因此,两种酶在高Mg(2+)和低游离ATP(4-)条件下的最大激素反应,与低热量摄入增加平均预期寿命的已知效应相关。