Suppr超能文献

混合模型关联作图中的变异解释。

Variation explained in mixed-model association mapping.

机构信息

Department of Agronomy, Kansas State University, Manhattan, KS, USA.

出版信息

Heredity (Edinb). 2010 Oct;105(4):333-40. doi: 10.1038/hdy.2010.11. Epub 2010 Feb 10.

Abstract

Genomic mapping of complex traits across species demands integrating genetics and statistics. In particular, because it is easily interpreted, the R(2) statistic is commonly used in quantitative trait locus (QTL) mapping studies to measure the proportion of phenotypic variation explained by molecular markers. Mixed models with random polygenic effects have been used in complex trait dissection in different species. However, unlike fixed linear regression models, linear mixed models have no well-established R(2) statistic for assessing goodness-of-fit and prediction power. Our objectives were to assess the performance of several R(2)-like statistics for a linear mixed model in association mapping and to identify any such statistic that measures model-data agreement and provides an intuitive indication of QTL effect. Our results showed that the likelihood-ratio-based R(2) (R(LR)(2)) satisfies several critical requirements proposed for the R(2)-like statistic. As R(LR)(2) reduces to the regular R(2) for fixed models without random effects other than residual, it provides a general measure for the effect of QTL in mixed-model association mapping. Moreover, we found that R(LR)(2) can help explain the overlap between overall population structure modeled as fixed effects and relative kinship modeled though random effects. As both approaches are derived from molecular marker information and are not mutually exclusive, comparing R(LR)(2) values from different models provides a logical bridge between statistical analysis and underlying genetics of complex traits.

摘要

跨物种复杂性状的基因组图谱绘制需要整合遗传学和统计学。特别是,由于易于解释,R²统计量通常用于数量性状基因座(QTL)映射研究,以衡量分子标记解释表型变异的比例。具有随机多基因效应的混合模型已被用于不同物种的复杂性状剖析。然而,与固定线性回归模型不同,线性混合模型没有用于评估拟合优度和预测能力的既定 R²统计量。我们的目标是评估线性混合模型在关联映射中几个类似 R²统计量的性能,并确定任何一种衡量模型数据一致性并提供 QTL 效应直观指示的统计量。我们的结果表明,基于似然比的 R²(R(LR)²)满足了对类似 R²统计量提出的几个关键要求。由于 R(LR)²对于没有除残差以外的随机效应的固定模型简化为常规 R²,因此它为混合模型关联映射中的 QTL 效应提供了通用度量。此外,我们发现 R(LR)²可以帮助解释作为固定效应建模的总体群体结构与通过随机效应建模的相对亲缘关系之间的重叠。由于这两种方法都源自分子标记信息,并且不相互排斥,因此比较来自不同模型的 R(LR)²值为复杂性状的统计分析和基础遗传学之间提供了一个逻辑桥梁。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验