Suppr超能文献

基于 COSMO-RS 的分析/量化离子液体及其与有机溶剂共溶剂混合物极性的指南。

A COSMO-RS based guide to analyze/quantify the polarity of ionic liquids and their mixtures with organic cosolvents.

机构信息

Departamento de Ingeniería Química, Universidad Complutense de Madrid, 28040 Madrid, Spain.

出版信息

Phys Chem Chem Phys. 2010 Feb 28;12(8):1991-2000. doi: 10.1039/b920651p. Epub 2010 Jan 18.

Abstract

A COSMO-RS descriptor (S(sigma-profile)) has been used in quantitative structure-property relationship (QSPR) studies by a neural network (NN) for the prediction of empirical solvent polarity E(T)(N) scale of neat ionic liquids (ILs) and their mixtures with organic solvents. S(sigma-profile) is a two-dimensional quantum chemical parameter which quantifies the polar electronic charge of chemical structures on the polarity (sigma) scale. Firstly, a radial basis neural network exact fit (RBNN) is successfully optimized for the prediction of E(T)(N), the solvatochromic parameter of a wide variety of neat organic solvents and ILs, including imidazolium, pyridinium, ammonium, phosphonium and pyrrolidinium families, solely using the S(sigma-profile) of individual molecules and ions. Subsequently, a quantitative structure-activity map (QSAM), a new concept recently developed, is proposed as a valuable tool for the molecular understanding of IL polarity, by relating the E(T)(N) polarity parameter to the electronic structure of cations and anions given by quantum-chemical COSMO-RS calculations. Finally, based on the additive character of the S(sigma-profile) descriptor, we propose to simulate the mixture of IL-organic solvents by the estimation of the S(sigma-profile)(Mixture) descriptor, defined as the weighted mean of the S(sigma-profile) values of the components. Then, the E(T)(N) parameters for binary solvent mixtures, including ILs, are accurately predicted using the S(sigma-profile)(Mixture) values from the RBNN model previously developed for pure solvents. As result, we obtain a unique neural network tool to simulate, with similar reliability, the E(T)(N) polarity of a wide variety of pure ILs as well as their mixtures with organic solvents, which exhibit significant positive and negative deviations from ideality.

摘要

一种 COSMO-RS 描述符(S(sigma-profile))已被用于神经网络(NN)的定量结构-性质关系(QSPR)研究,以预测经验溶剂极性 E(T)(N)尺度的纯离子液体(ILs)及其与有机溶剂的混合物。S(sigma-profile)是一种二维量子化学参数,用于量化化学结构在极性(sigma)尺度上的极性电子电荷。首先,径向基神经网络精确拟合(RBNN)成功地优化了 E(T)(N)的预测,E(T)(N)是各种纯有机溶剂和 ILs 的溶剂化参数,包括咪唑鎓、吡啶鎓、铵、鏻和吡咯烷鎓家族,仅使用单个分子和离子的 S(sigma-profile)。随后,提出了一种新的概念,即定量结构活性图(QSAM),作为理解 IL 极性的分子理解的有用工具,通过将 E(T)(N)极性参数与量子化学 COSMO-RS 计算给出的阳离子和阴离子的电子结构相关联。最后,基于 S(sigma-profile)描述符的可加性,我们建议通过估计混合物的 S(sigma-profile)(混合物)描述符来模拟 IL-有机溶剂混合物,定义为混合物中各成分 S(sigma-profile)值的加权平均值。然后,使用之前为纯溶剂开发的 RBNN 模型中的 S(sigma-profile)(混合物)值,准确预测包括 IL 在内的二元溶剂混合物的 E(T)(N)参数。结果,我们获得了一种独特的神经网络工具,可以以相似的可靠性模拟各种纯 IL 以及它们与有机溶剂的混合物的 E(T)(N)极性,这些混合物表现出显著的正偏离和负偏离理想情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验