李克特量表、测量水平与“统计学定律”。

Likert scales, levels of measurement and the "laws" of statistics.

机构信息

McMaster University, 1200 Main St. W., Hamilton, ON, L8N3Z5, Canada.

出版信息

Adv Health Sci Educ Theory Pract. 2010 Dec;15(5):625-32. doi: 10.1007/s10459-010-9222-y. Epub 2010 Feb 10.

Abstract

Reviewers of research reports frequently criticize the choice of statistical methods. While some of these criticisms are well-founded, frequently the use of various parametric methods such as analysis of variance, regression, correlation are faulted because: (a) the sample size is too small, (b) the data may not be normally distributed, or (c) The data are from Likert scales, which are ordinal, so parametric statistics cannot be used. In this paper, I dissect these arguments, and show that many studies, dating back to the 1930s consistently show that parametric statistics are robust with respect to violations of these assumptions. Hence, challenges like those above are unfounded, and parametric methods can be utilized without concern for "getting the wrong answer".

摘要

研究报告的评审员经常批评统计方法的选择。虽然其中一些批评是有充分依据的,但经常受到批评的是各种参数方法的使用,如方差分析、回归、相关,因为:(a) 样本量太小,(b) 数据可能不是正态分布,或 (c) 数据来自李克特量表,这些量表是有序的,因此不能使用参数统计。在本文中,我剖析了这些论点,并表明许多研究,追溯到 20 世纪 30 年代,一致表明参数统计对违反这些假设具有稳健性。因此,像上面那样的挑战是没有根据的,并且可以使用参数方法,而不必担心“得到错误的答案”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索