Suppr超能文献

医学生跨学科数字素养量表:开发、验证与分析

Digital literacy across disciplines scale for medical students: development, validation, and analysis.

作者信息

Wang Jun, Wu Juan, Chen Juxia, Wang Juan, Ding Xuechun, Zhu Dongdong, Peng Zhixiang, Zhang Airong

机构信息

Department of Medicine, Anqing Medical College, 1588 Jixian Road, Anqing, 246052, Anhui, China.

出版信息

BMC Med Educ. 2025 Jul 31;25(1):1131. doi: 10.1186/s12909-025-07708-4.

Abstract

PURPOSE

To develop and validate a Digital Literacy Across Disciplines (DLAD) scale for medical students, analyze its differential performance across gender and major groups, and provide insights for the digital transformation of medical education.

METHODS

Based on Zhou Xiaoli's theoretical framework of DLAD, integrated with World Federation for Medical Education (WFME) standards and Accreditation Council for Graduate Medical Education (ACGME) guidelines, a scale was developed through literature analysis, expert review, student feedback, and formal testing ( n = 675). Reliability and validity were assessed using Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA), whereas differences across majors and genders were analyzed via the Kruskal‒Wallis H test and the Mann‒Whitney U test.

RESULTS

EFA revealed a four-factor structure (Technology, Competence, Attitude, Knowledge), accounting for 61.5% of the cumulative variance. CFA further validated the model with strong structural validity (CFI = 0.919, TLI = 0.906, RMSEA = 0.069, SRMR = 0.057) and high internal consistency (Cronbach's α = 0.93). The finalized scale comprises four dimensions: Technology (3.71, IQR = 0.57), Attitude (3.75, IQR = 0.75), Knowledge (3.75, IQR = 1.00), and Competence (3.00, IQR = 0.89), with a total score of 3.42 (IQR = 0.67). Significant disparities were observed:Clinical Medicine students scored significantly lower in total score (3.08, IQR = 0.85) and subdimensions (Technology: 3.43, IQR = 1.00); Competence: 2.56, IQR = 1.11; Knowledge: 3.25, IQR = 1.25) compared with Preventive Medicine (3.69, IQR = 0.41, p < 0.001), Medical Imaging Technology (3.67, IQR = 0.79, p < 0.001), and Nursing (3.54, IQR = 0.50, p < 0.001).Female students outperformed males in the Attitude dimension ( p = 0.008, r = 0.1).

CONCLUSION

This study developed the first validated DLAD scale for medical education, revealing critical gaps in digital competence and interdisciplinary disparities. Embedding digital diagnosis-treatment simulations into curricula is recommended to enhance skill integration.

摘要

目的

开发并验证医学生跨学科数字素养(DLAD)量表,分析其在性别和专业群体中的差异表现,并为医学教育的数字化转型提供见解。

方法

基于周晓丽的DLAD理论框架,结合世界医学教育联合会(WFME)标准和毕业后医学教育认证委员会(ACGME)指南,通过文献分析、专家评审、学生反馈和正式测试(n = 675)开发了一个量表。使用探索性因素分析(EFA)和验证性因素分析(CFA)评估信效度,通过Kruskal-Wallis H检验和Mann-Whitney U检验分析专业和性别差异。

结果

EFA揭示了一个四因素结构(技术、能力、态度、知识),占累积方差的61.5%。CFA进一步验证了该模型具有较强的结构效度(CFI = 0.919,TLI = 0.906,RMSEA = 0.069,SRMR = 0.057)和较高的内部一致性(Cronbach's α = 0.93)。最终量表包括四个维度:技术(3.71,四分位距 = 0.57)、态度(3.75,四分位距 = 0.75)、知识(3.75,四分位距 = 1.00)和能力(3.(此处原文似乎有误,推测应为3.00)0,四分位距 = 0.89),总分3.42(四分位距 = 0.67)。观察到显著差异:与预防医学(3.69,四分位距 = 0.41,p < 0.001)、医学影像技术(3.67,四分位距 = 0.79,p < 0.001)和护理学(3.54,四分位距 = 0.50,p < 0.001)相比,临床医学专业学生在总分(3.08,四分位距 = 0.85)和子维度(技术:3.43,四分位距 = 1.00;能力:2.56,四分位距 = 1.11;知识:3.25,四分位距 = 1.25)上得分显著更低。女生在态度维度上表现优于男生(p = 0.008,r = 0.1)。

结论

本研究开发了首个经过验证的医学教育DLAD量表,揭示了数字能力的关键差距和跨学科差异。建议将数字诊断治疗模拟嵌入课程以增强技能整合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验