Universitätsmedizin Göttingen, Abteilung Medizinische Statistik, Göttingen, Germany.
Stat Med. 2010 May 10;29(10):1145-56. doi: 10.1002/sim.3861.
Sample size estimation in clinical trials depends critically on nuisance parameters, such as variances or overall event rates, which have to be guessed or estimated from previous studies in the planning phase of a trial. Blinded sample size reestimation estimates these nuisance parameters based on blinded data from the ongoing trial, and allows to adjust the sample size based on the acquired information. In the present paper, this methodology is developed for clinical trials with count data as the primary endpoint. In multiple sclerosis such endpoints are commonly used in phase 2 trials (lesion counts in magnetic resonance imaging (MRI)) and phase 3 trials (relapse counts). Sample size adjustment formulas are presented for both Poisson-distributed data and for overdispersed Poisson-distributed data. The latter arise from sometimes considerable between-patient heterogeneity, which can be observed in particular in MRI lesion counts. The operation characteristics of the procedure are evaluated by simulations and recommendations on how to choose the size of the internal pilot study are given. The results suggest that blinded sample size reestimation for count data maintains the required power without an increase in the type I error.
临床试验中的样本量估计取决于讨厌参数,如方差或总事件率,这些参数必须在试验的规划阶段通过猜测或从以前的研究中进行估计。盲法样本量重新估计根据正在进行的试验中的盲数据估计这些讨厌参数,并允许根据获得的信息调整样本量。在本文中,该方法针对以计数数据作为主要终点的临床试验进行了开发。在多发性硬化症中,此类终点常用于 2 期试验(磁共振成像(MRI)中的病变计数)和 3 期试验(复发计数)。针对泊松分布数据和过度离散泊松分布数据,提出了样本量调整公式。后者源于患者间有时相当大的异质性,这种异质性在 MRI 病变计数中尤为明显。通过模拟评估了该方法的操作特征,并就如何选择内部先导研究的规模提出了建议。结果表明,计数数据的盲法样本量重新估计在不增加Ⅰ类错误的情况下保持了所需的功效。