Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
Chemistry. 2010 Mar 1;16(9):2730-40. doi: 10.1002/chem.200903269.
Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.
金属离子在蛋白质表面的积累是引发小分子金属簇和自然中无机材料形成的关键步骤。这一事件有望控制材料的成核、生长和位置。尽管已经在宏观水平上阐明了天然和模型体系形成材料的多步组装过程,但蛋白质如何在原子水平上影响初始过程仍然存在许多未知。本文通过使用含有 Rh(III)离子的多孔鸡卵清溶菌酶 (HEWL) 晶体作为反应的模型蛋白质表面,阐明了氨基酸和氢键促进金属积累反应的协同效应。实验结果揭示了金属积累引发的重要意义,涉及氨基酸和氢键的高度协同动力学:i)氢键的破坏可以诱导氨基酸残基的构象变化以捕获 Rh(III)离子。ii)氢键预先组织的水分子可以稳定 Rh(III)配位作为水合配体。iii)与氨基酸残基形成氢键的水分子可以被 Rh(III)离子取代,从而与残基形成多核结构。iv)即使在低 pH(约 2)下,Rh(III)水合配合物也可以通过稳定氢键保留在氨基酸残基上。这些包括氢键的金属-蛋白质相互作用可能促进天然金属积累反应,并且在制备包含蛋白质的新型无机材料方面也可能有用。