Suppr超能文献

磷酸肌醇 3-激酶和哺乳动物雷帕霉素靶蛋白途径控制 T 细胞迁移。

Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration.

机构信息

Division of Immunology and Cell Biology, University of Dundee, Dundee, UK.

出版信息

Ann N Y Acad Sci. 2010 Jan;1183:149-57. doi: 10.1111/j.1749-6632.2009.05134.x.

Abstract

The established role for phosphatidylinositol (3,4,5) triphosphate (PI(3,4,5)P3) signaling pathways is to regulate cell metabolism. More recently it has emerged that PI(3,4,5)P3 signaling via mammalian target of rapamycin and Foxo transcription factors also controls lymphocyte trafficking by determining the repertoire of adhesion and chemokine receptors expressed by T lymphocytes. In quiescent T cells, nonphosphorylated active Foxos maintain expression of KLF2, a transcription factor that regulates expression of the chemokine receptors CCR7 and sphingosine 1 phosphate receptor, and the adhesion receptor CD62L that together control T-cell transmigration into secondary lymphoid tissues. PI(3,4,5)P3 mediates activation of protein kinase B, which phosphorylates and inactivates Foxos, thereby terminating expression of KLF2 and its target genes. The correct localization of lymphocytes is essential for effective immune responses, and the ability of phosphoinositide 3-kinase and mammalian target of rapamycin to regulate expression of chemokine receptors and adhesion molecules puts these signaling molecules at the core of the molecular mechanisms that control lymphocyte trafficking.

摘要

磷脂酰肌醇(3,4,5)三磷酸(PI(3,4,5)P3)信号通路的既定作用是调节细胞代谢。最近,人们发现,通过哺乳动物雷帕霉素靶蛋白和 Foxo 转录因子的 PI(3,4,5)P3 信号通路也可以通过确定 T 淋巴细胞表达的粘附和趋化因子受体的 repertoire 来控制淋巴细胞的迁移。在静止的 T 细胞中,非磷酸化的活性 Foxo 维持着 KLF2 的表达,KLF2 是一种转录因子,调节趋化因子受体 CCR7 和鞘氨醇 1 磷酸受体以及粘附受体 CD62L 的表达,这些受体共同控制 T 细胞向次级淋巴组织的迁移。PI(3,4,5)P3 介导蛋白激酶 B 的激活,后者磷酸化并失活 Foxo,从而终止 KLF2 和其靶基因的表达。淋巴细胞的正确定位对于有效的免疫反应至关重要,而磷酸肌醇 3-激酶和哺乳动物雷帕霉素靶蛋白调节趋化因子受体和粘附分子的表达的能力使这些信号分子成为控制淋巴细胞迁移的分子机制的核心。

相似文献

1
Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration.
Ann N Y Acad Sci. 2010 Jan;1183:149-57. doi: 10.1111/j.1749-6632.2009.05134.x.
2
Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking.
Nat Immunol. 2008 May;9(5):513-21. doi: 10.1038/ni.1603. Epub 2008 Apr 6.
3
The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis.
Biochim Biophys Acta. 2010 Sep;1803(9):991-1002. doi: 10.1016/j.bbamcr.2010.04.005. Epub 2010 Apr 23.
4
Signaling through L-selectin mediates enhanced chemotaxis of lymphocyte subsets to secondary lymphoid tissue chemokine.
J Immunol. 2012 Apr 1;188(7):3223-36. doi: 10.4049/jimmunol.1101032. Epub 2012 Mar 2.
7
PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells.
J Exp Med. 2012 Dec 17;209(13):2441-53. doi: 10.1084/jem.20112607. Epub 2012 Nov 26.
9
PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors.
J Exp Med. 2010 Jul 5;207(7):1347-50. doi: 10.1084/jem.20101156.
10

引用本文的文献

2
Phosphoinositide Signaling in Immune Cell Migration.
Biomolecules. 2023 Nov 24;13(12):1705. doi: 10.3390/biom13121705.
4
Immune-Based Therapy in Triple-Negative Breast Cancer: From Molecular Biology to Clinical Practice.
Cancers (Basel). 2022 Apr 23;14(9):2102. doi: 10.3390/cancers14092102.
5
PI3K in T Cell Adhesion and Trafficking.
Front Immunol. 2021 Aug 6;12:708908. doi: 10.3389/fimmu.2021.708908. eCollection 2021.
6
Metabolic Pathways Involved in Regulatory T Cell Functionality.
Front Immunol. 2019 Dec 3;10:2839. doi: 10.3389/fimmu.2019.02839. eCollection 2019.
8
mTOR Regulation of Lymphoid Cells in Immunity to Pathogens.
Front Immunol. 2016 May 11;7:180. doi: 10.3389/fimmu.2016.00180. eCollection 2016.
9
TCR Signaling in T Cell Memory.
Front Immunol. 2015 Dec 10;6:617. doi: 10.3389/fimmu.2015.00617. eCollection 2015.
10
TCR signaling to NF-κB and mTORC1: Expanding roles of the CARMA1 complex.
Mol Immunol. 2015 Dec;68(2 Pt C):546-57. doi: 10.1016/j.molimm.2015.07.024. Epub 2015 Aug 8.

本文引用的文献

1
An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance.
Immunity. 2009 Mar 20;30(3):358-71. doi: 10.1016/j.immuni.2009.02.003. Epub 2009 Mar 12.
2
Mechanisms of chemokine and antigen-dependent T-lymphocyte navigation.
Biochem J. 2009 Feb 15;418(1):13-27. doi: 10.1042/BJ20081969.
3
Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor.
Nat Immunol. 2009 Feb;10(2):176-84. doi: 10.1038/ni.1689. Epub 2009 Jan 11.
6
Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival.
J Leukoc Biol. 2008 Oct;84(4):949-57. doi: 10.1189/jlb.0108024. Epub 2008 Jun 24.
7
The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia.
Cell Cycle. 2008 Apr 15;7(8):965-70. doi: 10.4161/cc.7.8.5753. Epub 2008 Feb 19.
8
A brief introduction to FOXOlogy.
Oncogene. 2008 Apr 7;27(16):2258-62. doi: 10.1038/onc.2008.29.
9
Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking.
Nat Immunol. 2008 May;9(5):513-21. doi: 10.1038/ni.1603. Epub 2008 Apr 6.
10
CCR7 and its ligands: balancing immunity and tolerance.
Nat Rev Immunol. 2008 May;8(5):362-71. doi: 10.1038/nri2297.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验